Solve the partial differentiatial equation
Answers
Step-by-step explanation:
Given
(x²+y²) p + 2xyq = (x+y)z
The subsidiary equations are
dx/(x²+y²) = dy/2xy = dz/(x+y)z
= [zdx + zdy - (x+y)dz]/[z(x²+y²)+2xyz- (x+y)²z]
= z(dx+dy) - (x+y)dz / 0
⇒z(dx+dy) - (x+y) dz = 0
⇒z d(x+y) - (x+y)dz = 0
⇒zd(x+y) - (x+y)dz / z² = 0
⇒d(x+y / z) = 0
⇒x+y / z = c₁
From first two ratios we get
dx/x²+y² = 2dy/4xy
⇒2(x²+y²) dy = 4xy dx
⇒2(x²+y²) dy - 4xy dx = 0
⇒2x² dy - 2y² dy + 4y² dy -4xy dx = 0
⇒2(x²-y²) dy - 2y(2xdx - 2ydy) = 0
⇒[(x²-y²) 2 dy - 2y d(x²-y²)]/(x²-y²)²
= 0/(x²-y²)
⇒d(2y / x²-y²) = 0
Integrating , we get
2y/x²-y² = c₂
∴ The solution is x+y / z = Φ(2y / x²-y²)
Which is required solution .