Math, asked by shabs45, 6 months ago

)
Solve the PDE (D2 - DD') z = sin x cos 2 y​

Answers

Answered by neetuart33
8

Step-by-step explanation:

mark as brainliest

Attachments:
Answered by Raghav1330
1

To Find:

PDE(D2 - DD')z = sin x cos²y

Solution:

 PI = \frac{1}{(D+3)(D+1)} e^{e^{x} }

     = \frac{1}{D+3} e^{-x}e^{e^{x} }× e^{x}dx                     ∵\frac{1}{D-a}×e^{ax}e^{-ax}×dx

Putting e^{x} = t

         e^{x}dx = dt

       ∫e^{e^{x} }×e^{x}dx =e^{t}dt=e^{t}=e^{e^{x} }

     So, PI = \frac{1}{D+3}e^{-x}e^{e^{x} }-e^{x}dx

                = \frac{1}{D+3}e^{-x}.e^{e^{x} }

     Therefore,         P.I.  = e^{-3x}e^{e^{x} }.e^{3x}.e^{-x}dx

Similar questions