Math, asked by anshuln1335234, 10 months ago

solve the pde yzp+zxq-xy=0​

Answers

Answered by Swarup1998
2

Lagrange's Solution of a Linear Partial Differential Equation Pp + Qq = R

To find: Solution of the partial differential equation yzp+zxq-xy=0.

Solution: The given partial differential equation is

\quad\quad yzp+zxp=xy

The Lagrange's subsidiary equations are

\quad\quad \frac{dx}{yz}=\frac{dy}{zx}=\frac{dz}{xy}

Taking the first two ratios, we get

\quad \frac{dx}{yz}=\frac{dy}{zx}

\Rightarrow \frac{dx}{y}=\frac{dy}{x}

\Rightarrow x\:dx=y\:dy

On integration, we get

\quad\int x\:dx=\int y\:dy

\Rightarrow \frac{1}{2}\:x^{2}=\frac{1}{2}\:y^{2}+\frac{1}{2}\:c_{1} where \frac{1}{2}\:c_{1} is integral constant

\Rightarrow x^{2}-y^{2}=c_{1} .....(1)

Again taking the last two ratios, we get

\quad \frac{dy}{zx}=\frac{dz}{xy}

\Rightarrow \frac{dy}{z}=\frac{dz}{y}

\Rightarrow y\:dy=z\:dz

On integration, we get

\quad \int y\:dy=\int z\:dz

\Rightarrow \frac{1}{2}\:y^{2}=\frac{1}{2}\:z^{2}+\frac{1}{2}\:c_{2} where \frac{1}{2}\:c_{2} is integral constant

\Rightarrow y^{2}-z^{2}=c_{2} .....(2)

Answer:

∴ the required general solution is

\quad \phi(x^{2}-y^{2},\:y^{2}-z^{2})=0 where \phi is arbitrary.

Similar questions