Math, asked by ballubhai, 1 year ago

Solve the problem ☺️☺️☺️​

Attachments:

Answers

Answered by Anonymous
2

Answer:

❤️ Hey mate ❤️

Check attachment......

Attachments:
Answered by Anonymous
11

\dfrac{ \sqrt{ {a}^{2}  \:  +  \:  {b}^{2} } \:  -  \: b }{a \:  -  \:  \sqrt{ {a}^{2}  \:   - \:  {b}^{2}  } }  \:  \div  \:  \dfrac{ \sqrt{ {a}^{2} \:   -  \:  {b}^{2}  } \:  +  \: a }{ \sqrt{ {a}^{2} \:  +  \:  {b}^{2}  } \:  +  \: b }

_____________ [ GIVEN ]

• We have to simply solve it.

________________________________

=> \dfrac{ \sqrt{ {a}^{2}  \:  +  \:  {b}^{2} } \:  -  \: b }{a \:  -  \:  \sqrt{ {a}^{2}  \:   - \:  {b}^{2}  } }  \:  \div  \:  \dfrac{ \sqrt{ {a}^{2} \:   -  \:  {b}^{2}  } \:  +  \: a }{ \sqrt{ {a}^{2} \:  +  \:  {b}^{2}  } \:  +  \: b }

=> \dfrac{ \sqrt{ {a}^{2}  \:  +  \:  {b}^{2} } \:  -  \: b }{a \:  -  \:  \sqrt{ {a}^{2}  \:   - \:  {b}^{2}  } }  \:   \times   \:  \frac{ \sqrt{ {a}^{2} \:    +   \:  {b}^{2}  } \:  +  b }{ \sqrt{ {a}^{2} \:   -   \:  {b}^{2}  } \:  +  \: a}

Applying ..

(a + b) (a - b)² = a² - b²

We get,

=> \dfrac{ {a}^{2} \:  +  \:  {b}^{2}   \:  -  \:  {b}^{2} }{ {a}^{2} \:  -  \:  {a}^{2}   \:  +  \:  {b}^{2} }

Now.. cancel the terms which are similar but opposite in signs.

Doing that.. we get the following result

=> \dfrac{ {a}^{2}}{ {b}^{2} }

______________________________

\dfrac{ {a}^{2}}{ {b}^{2} }

___________ [ ANSWER ]

______________________________

Similar questions