Math, asked by LokeshRanjan5, 1 month ago

solve the problem... ​

Attachments:

Answers

Answered by avi5270
0

Step-by-step explanation:

{(

3

2

)

2

}

3

×(

3

1

)

−4

×3

−1

×(

6

1

)]=

81

32

Step-by-step explanation:

Given : Expression [{(23)2}3×(13)−4×3−1×(16)][\{(\frac{2}{3})^2\}^3\times (\frac{1}{3})^{-4}\times 3^{-1}\times (\frac{1}{6})][{(

3

2

)

2

}

3

×(

3

1

)

−4

×3

−1

×(

6

1

)]

To find : Simplify the expression ?

Solution :

Solving the expression,

[{(23)2}3×(13)−4×3−1×(16)][\{(\frac{2}{3})^2\}^3\times (\frac{1}{3})^{-4}\times 3^{-1}\times (\frac{1}{6})][{(

3

2

)

2

}

3

×(

3

1

)

−4

×3

−1

×(

6

1

)]

=[{(49)}3×(3)4×13×(16)]=[\{(\frac{4}{9})\}^3\times (3)^{4}\times\frac{1}{3} \times (\frac{1}{6})]=[{(

9

4

)}

3

×(3)

4

×

3

1

×(

6

1

)]

=[64729×81×13×16]=[\frac{64}{729}\times 81\times\frac{1}{3} \times \frac{1}{6}]=[

729

64

×81×

3

1

×

6

1

]

=3281=\frac{32}{81}=

81

32

Therefore, [{(23)2}3×(13)−4×3−1×(16)]=3281[\{(\frac{2}{3})^2\}^3\times (\frac{1}{3})^{-4}\times 3^{-1}\times (\frac{1}{6})]=\frac{32}{81}[{(

3

2

)

2

}

3

×(

3

1

)

−4

×3

−1

×(

6

1

)]=

81

32

Answered by Anonymous
0

[\{(\frac{2}{3})^2\}^3\times (\frac{1}{3})^{-4}\times 3^{-1}\times (\frac{1}{6})]

=[\{(\frac{4}{9})\}^3\times (3)^{4}\times\frac{1}{3} \times (\frac{1}{6})]

=[\frac{64}{729}\times 81\times\frac{1}{3} \times \frac{1}{6}]

=\frac{32}{81}

Similar questions