Math, asked by santoshsingh15244, 9 months ago

Solve the problem fast ​

Attachments:

Answers

Answered by zahaansajid
4

x = 2 +  \sqrt{2}  \\  {x}^{2}  = (2 +  \sqrt{2} ) {}^{2}   \\  {x}^{2} = {2}^{2}  +  {( \sqrt{2}) }^{2}  + 2 \times 2 \times  \sqrt{2}   \\  {x}^{2}  = 4 + 2 + 4 \sqrt{2}  = 6 + 4 \sqrt{2}  \\  \\  \frac{1}{ x }  =  \frac{1}{2 +  \sqrt{2} }  =  \frac{2 -  \sqrt{2} }{4 - 2}  =  \frac{2 -  \sqrt{2} }{2}  \\  \frac{1}{ {x}^{2} }  =  {( \frac{2 -  \sqrt{2} }{2} )}^{2}  =  \frac{4 + 2 - 4 \sqrt{2} }{4}   \\   \:  \:  \:  \:  \:  \:  \: =  \frac{6 -  \sqrt{2} }{4}

 \frac{4}{ {x}^{2} }  = 4 \times  \frac{1}{ {x}^{2} }  =  \frac{4(6 - 4 \sqrt{2}) }{4}  = 6 - 4 \sqrt{2}

Therefore,

 {x}^{2}  +  \frac{4}{ {x}^{2} }  = 6 + 4 \sqrt{2}  + 6 - 4 \sqrt{2}  = 12

Therefore, the final answer is 12

Hope this is helpful to you

Pls mark as brainliest

Follow me and I'll follow you back

Answered by zayaanshamsheer
3

Answer:

Step-by-step explanation:

x^2=(2+\sqrt{2))^2=6+4\sqrt{2}

x^2+4/x^2=6+4\sqrt{2}+4/6+4\sqrt{2}=

6+4\sqrt{2}+  4/6+4\sqrt{2}*6-4\sqrt{2}/6-4\sqrt{2}=6+4\sqrt{2}+24-16\sqrt{2}/4

=(6+4\sqrt{2})4/4+24-16\sqrt{2}/4=24 + 16\sqrt{2}+24-16\sqrt{2}/4=48/4=12

Similar questions