Solve the problem Guys..
Q23
Answers
Answer:
Explanation :
→ The laws of indices are used in the above sum .
→
→
→ We will take commons and then cancel the denominator and numerator .
→ At last we can compare powers when base is equal .
→
→ Note that a , n , m should not be 1 , or 0 .
ANSWER:------------
{33m×239n×32×(3(−n/2))−2−27n}
⟹{32n×32×3n−33n33m×23\implies \frac{3^{2n}\time)
(3^2\times3^{n}-3^{3n}}{3^{3m}\times 2^3}⟹33m×2332n×32×3n−33n)
(⟹33n(32−1)33m×23\implies \frac{3^{3n}(3^2-1)}{3^{3m}\times 2^3}⟹33m×2333n(32−1)
⟹(33n(9−1)33m×23\implies \frac{3^{3n}(9-1)}{3^{3m}\times 2^3}⟹33m×2333n(9−1)
⟹33n(8)33m×23\implies \frac{3^{3n}(8)}{3^{3m}\times 2^3}⟹33m×2333n(8)
{Given:33n(8)33m×23=127⟹33n33m=3−3⟹33n−3m=3−3⟹3n−3m=−3⟹m−n
(=1\begin{lgathered}Given: \frac{3^{3n}(8)}{3^{3m}\times)
2^3}=\frac{1}{27}\\\\\\\implies \frac{3^{
3n}}{3^{3m}}=3^{-3}\\\\\\\implies
3^{3n-3m}=3^{-3}\\\\\\\implies
3n-3m=-3\\\\\\\implies m-
n=1\end{lgathered}Given:33m×2333n(8)=271⟹33m33n
=3−3⟹33n−3m=3−3⟹3n−3m=−3⟹m−n
=1
hope it helps:----------
T!—!ANKs!!!!