Solve the problem : show that m²-n²=4 rootmn
Attachments:
Answers
Answered by
2
here is the answer....
Attachments:
Sudipta2002:
plzz choose it as brainliest
Answered by
1
Heya,
Let theta be 'A'
Given=> tanA + sinA = m. .... equation 1
tanA - sinA = n. ...... equation 2
Squaring both the equation, we get;
tan²A + sin²A + 2tanAsinA = m². .... equation 3
tan²A + sin²A - 2tanAsinA = n². ...... equation 4
subtracting equation 4 minus equation 3
(tan²A + sin²A + 2tanAsinA) - (tan²A + sin²A - 2 tanAsinA) = m² - n²
=> tan²A + sin²A + 2tanAsinA - tan²A - sin²A + 2 tanAsinA
=> 4tanAsinA = m² - n²
Squaring both side...
=> 16tan²Asin²A = (m² - n²)²
=> 16 tan²A(1-cos²A) = (m² - n²)²
=> 16 tan²A - tan²Acos²A = (m² - n²)²
=> 16 tan²A - sin²A/cos²Ax cos2A = (m² - n²)²
=> 16 tan²A - sin²A = (m² - n²)²
=> 16 (tanA +sinA) (tanA - sinA) = (m² - n²)²
=> 16mn = (m² - n²)²
=> m² - n² = 4√mn
Hence Proved
Hope this helps....:)
Let theta be 'A'
Given=> tanA + sinA = m. .... equation 1
tanA - sinA = n. ...... equation 2
Squaring both the equation, we get;
tan²A + sin²A + 2tanAsinA = m². .... equation 3
tan²A + sin²A - 2tanAsinA = n². ...... equation 4
subtracting equation 4 minus equation 3
(tan²A + sin²A + 2tanAsinA) - (tan²A + sin²A - 2 tanAsinA) = m² - n²
=> tan²A + sin²A + 2tanAsinA - tan²A - sin²A + 2 tanAsinA
=> 4tanAsinA = m² - n²
Squaring both side...
=> 16tan²Asin²A = (m² - n²)²
=> 16 tan²A(1-cos²A) = (m² - n²)²
=> 16 tan²A - tan²Acos²A = (m² - n²)²
=> 16 tan²A - sin²A/cos²Ax cos2A = (m² - n²)²
=> 16 tan²A - sin²A = (m² - n²)²
=> 16 (tanA +sinA) (tanA - sinA) = (m² - n²)²
=> 16mn = (m² - n²)²
=> m² - n² = 4√mn
Hence Proved
Hope this helps....:)
Similar questions