Math, asked by shivajikokane, 23 days ago

solve the problem with correct solution​

Attachments:

Answers

Answered by shilpialwayspriya
1

8 kindly check the attachment

Attachments:
Answered by pulakmath007
5

SOLUTION

GIVEN

 \displaystyle \sf{x +  \sqrt{15}  = 4}

TO DETERMINE

 \displaystyle \sf{x +   \frac{1}{x} }

EVALUATION

Here it is given that

 \displaystyle \sf{x +  \sqrt{15}  = 4}

 \displaystyle \sf{ \implies \: x  = 4 -  \sqrt{15}  }

 \displaystyle \sf{ \implies \:  \frac{1}{x}   =  \frac{1}{4 -  \sqrt{15}  } }

 \displaystyle \sf{ \implies \:  \frac{1}{x}   =  \frac{(4 +  \sqrt{15} )}{(4 +  \sqrt{15})( 4 -  \sqrt{15})  } }

 \displaystyle \sf{ \implies \:  \frac{1}{x}   =  \frac{(4 +  \sqrt{15} )}{ {4}^{2}  -  {( \sqrt{15} )}^{2}   } }

 \displaystyle \sf{ \implies \:  \frac{1}{x}   =  \frac{(4 +  \sqrt{15} )}{ 16 - 15} }

 \displaystyle \sf{ \implies \:  \frac{1}{x}   =  \frac{(4 +  \sqrt{15} )}{ 1} }

 \displaystyle \sf{ \implies \:  \frac{1}{x}   =  4 +  \sqrt{15} }

Therefore

 \displaystyle \sf{ \:  x + \frac{1}{x}  }

 \displaystyle \sf{ = (4 -  \sqrt{15} ) + (4 +  \sqrt{15}) }

 \displaystyle \sf{ = 8}

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If x=√3a+2b + √3a-2b / √3a+2b - √3a-2b

prove that bx²-3ax+b=0

https://brainly.in/question/19664646

2. the order of the surd 7√8

https://brainly.in/question/31962770

Similar questions