Chemistry, asked by alice009, 5 months ago

solve the problems???​

Attachments:

Answers

Answered by Mister360
0

There is a same question here answered correctly by another user

  • kindly visit the link for your answer

link:-

https://brainly.in/question/30845504

Answered by Ᏸυէէєɾϝɭყ
17

Answer:

Explanation:

\huge\boxed{\fcolorbox{red}{Yellow}{Given Reaction}}</p><p>

\sf\:Sn(S)|Sn^{+2}(0.05M)\:||\:H^{+1}(0.02)|H_2(g)(1\:bar)|Pt(s)Sn(S)∣Sn+2+(0.05M)∣∣H + +1(0.02)∣H2(g)(1bar)∣Pt(s)

\huge \bold\green{To \:  find }

Calculate the potential of the given cell reaction at 298 k. and

\sf\:E\degree\:Sn^{+2}/Sn=-0.14E°Sn+2+ /Sn=−0.14

Nernst \: Equation

\sf\:E_{cell}=E\degree_{cell}+\dfrac{-2.303RT}{nF}\log\dfrac{[Prduct]}{[Reactant]} \\ \implies \: or \\  \sf\:E_{cell}=E\degree_{cell}-\dfrac{0.059}{n}\log\:QE cell=E° cell − n0.059logQ

E°cell \ \:  \\ \sf\:E\degree_{cell=E\degree_{cathode}-E\degree_{anode}}

\textbf{ \huge { Solution }}

WE HAVE REACTION

\sf\:Sn(S)|Sn^{+2}(0.05M)\:||\:H^{+1}(0.02M)|H_2(g)(1\:bar)|Pt(s)Sn(S)∣Sn+2+ (0.05M)∣∣H+ +1(0.02M)∣H2(g)(1bar)∣Pt(s)

\mathtt{we \:  know \:  that}

\bf\:E\degree_{cell}=E\degree_{cathode}-E\degree_{anode}

\sf\:E\degree_{cell}=0-(-0.14)E° </p><p>[tex]\sf\:E\degree_{cell}=0-(-0.14)E° cell=0−(−0.14)

\sf\:E\degree_{cell}=0.14VE° </p><p>[tex]\sf\:E\degree_{cell}=0.14VE° cell</p><p>[tex]\sf\:E\degree_{cell}=0.14VE° cell	</p><p>[tex]\sf\:E\degree_{cell}=0.14VE° cell	 =0.14V

\mathtt{At  \: anode = }

\sf\:Sn\longrightarrow\:Sn^{+2}2e^{-1}Sn⟶Sn </p><p>[tex]\sf\:Sn\longrightarrow\:Sn^{+2}2e^{-1}Sn⟶Sn +2 +2e −1

 \mathtt{at \: cathode}

\sf\:2H^{+}+2e^{-1}\longrightarrow\:H_22H </p><p>[tex]\sf\:2H^{+}+2e^{-1}\longrightarrow\:H_22H  +2e </p><p>[tex]\sf\:2H^{+}+2e^{-1}\longrightarrow\:H_22H  +2e  +−1</p><p>[tex]\sf\:2H^{+}+2e^{-1}\longrightarrow\:H_22H  +2e  +−1 + ⟶H </p><p>[tex]\sf\:2H^{+}+2e^{-1}\longrightarrow\:H_22H  +2e  +−1 + ⟶H  + 2</p><p>[tex]\sf\:2H^{+}+2e^{-1}\longrightarrow\:H_22H  +2e  +−1 + ⟶H  + 2 + 	</p><p></p><p>[tex]\sf\:2H^{+}+2e^{-1}\longrightarrow\:H_22H  +2e  +−1 + ⟶H  + 2 + 	 \\  \\ Thus, n= 2

\mathtt{over \: all \: reaction : }

\sf\:Sn+2H^{+1}\longrightarrow\:H_2+Sn^{+2}Sn+2H </p><p>[tex]\sf\:Sn+2H^{+1}\longrightarrow\:H_2+Sn^{+2}Sn+2H +1</p><p>[tex]\sf\:Sn+2H^{+1}\longrightarrow\:H_2+Sn^{+2}Sn+2H +1+ ⟶H </p><p>[tex]\sf\:Sn+2H^{+1}\longrightarrow\:H_2+Sn^{+2}Sn+2H +1+ ⟶H + 2</p><p>[tex]\sf\:Sn+2H^{+1}\longrightarrow\:H_2+Sn^{+2}Sn+2H +1+ ⟶H + 2 +Sn </p><p>[tex]\sf\:Sn+2H^{+1}\longrightarrow\:H_2+Sn^{+2}Sn+2H +1+ ⟶H + 2 +Sn +2</p><p>[tex]\sf\:Sn+2H^{+1}\longrightarrow\:H_2+Sn^{+2}Sn+2H +1+ ⟶H + 2 +Sn +2

\mathtt{then : }

\sf\:Q=\dfrac{[Prduct]}{[Reactant]}

\sf\:Q=\dfrac{[Sn^{+2}]}{[H^{+1}]^2}

\green{\underline{\underline{\huge{\mathfrak\red{Given}}}}}

\sf\:[Sn^{+2}]=0.05M\:and\:[H^{+1}]=0.02M

\sf\implies\:Q=\dfrac{0.05}{(0.02)^2}

\sf\implies\:Q=\dfrac{5\times100\times100}{2\times100}

 \implies\:Q=250

 \mathtt{By  \: Nernst \:  Equation :}

\sf\:E_{cell}=E\degree_{cell}-\dfrac{0.09}{n}\log\:Q

\sf\implies\:E_{cell}=0.14-\dfrac{0.059}{2}\log\:250

\sf\implies\:E_{cell}=0.14-\dfrac{0.056}{2}[\log(25\times10)]

\sf\implies\:E_{cell}=0.14-0.03[\log25+\log10]

\sf\implies\:E_{cell}=0.14-0.03[2\times0.69-1]

\sf\implies\:E_{cell}=0.14-0.03[1.38-1]

\sf\implies\:E_{cell}=0.14-0.03[0.38]

\sf\implies\:E_{cell}=0.14-0.0114

\sf\implies\:E_{cell}=0.1286V

 \mathtt{Therefore,the  \:  potential  \: of  \: the \:  given \:  cell \:  is \:  0.1286V.}

Similar questions