Math, asked by astroseventeen21, 3 days ago

Solve the problems :

Attachments:

Answers

Answered by ramkrishnanj10
1

\large\mathscr \color{white}\colorbox{red}{\colorbox{orange}{\colorbox{yellow}{\colorbox{green}{\colorbox{blue}{\colorbox{indigo}{\colorbox{violet}{\colorbox{black}{\underline {ANSWER}}}}}}}}}

19.

\tt{8 - 2 \sqrt{15 }}  \\ \tt = 5 + 3 - 2 \sqrt{15}  \\ \tt =  {(\sqrt{5}  )} ^{2}  +  {( \sqrt{3)} }^{2}  - 2 \times  \sqrt{5}  \times  \sqrt{3}  \\  \\ \tt =  { (\sqrt{5} -  \sqrt{3})  }^{2}  \\  \\ \tt{\therefore8 - 2 \sqrt{15}  =  {( \sqrt{5} -  \sqrt{3} ) }^{2}  }\\  \\\tt \sqrt{8 -  2\sqrt{15} }  = \underline{\underline{ \sqrt{5}  -  \sqrt{3}}}

20.

  \tt\frac{1}{1 +  \sqrt{2} +  \sqrt{3}  }  \\   \\  =   \small \tt\frac{1}{(( 1 + \sqrt{2}) +  \sqrt{3}  )}  \times  \frac{((1 +  \sqrt{2}) -  \sqrt{3} ) }{((1 +  \sqrt{2})  -  \sqrt{3} )}  \\  \\  =  \small \tt  \frac{1 +  \sqrt{2} -  \sqrt{3}  }{ {(1 +  \sqrt{2}) }^{2} -  (1 + \sqrt{2} )( \sqrt{3}) +  \sqrt{3}(1 +  \sqrt{2}  ) -  { \sqrt{3} }^{2}   }  \\  \\   =  \: \small \tt \frac{1 +  \sqrt{2}  -   \sqrt{3}  }{1 + 2 + 2 \sqrt{2}  \cancel{\color{red}{-  \sqrt{3} }}   \cancel{\color{red}{-  \sqrt{6} }}+   \cancel{\color{red}{\sqrt{3} }}+   \cancel{\color{red}{\sqrt{6}} }  - 9} \\  \\  = \tt  \frac{1 +  \sqrt{2}  -  \sqrt{3} }{2 \sqrt{2 } - 6 }  \\  \\  = \tt  \frac{(1+\sqrt{2}-\sqrt{3})}{(2\sqrt{2}-6)}\times\frac{2\sqrt{2}+6)}{(2\sqrt{2}+6)}\\ \\\tt=\frac{2\sqrt{2}+6+2{(\sqrt{2})}^{2}+6\sqrt{2}-2\sqrt{2}\sqrt{3}-6\sqrt{3}}{({2\sqrt{2}})^{2}-{6}^{2}}\\\\\tt\frac{8\sqrt{2}+10-2\sqrt{2}\sqrt{3}-6\sqrt{3}}{8-36}\\\\=\tt\underline{\underline{\frac{8\sqrt{2}+10-2\sqrt{6}-6\sqrt{3}}{-28}}}

21.

\tiny3(\frac{1}{\sqrt{1}+\sqrt{2}}\times\frac{\sqrt{1}-\sqrt{2}}{\sqrt{1}-\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}\times\frac{\sqrt{2}-\sqrt{3}}{\sqrt{2}-\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{4}}\times\frac{\sqrt{3}-\sqrt{4}}{\sqrt{3}-\sqrt{4}}+...+\frac{1}{\sqrt{7}+\sqrt{8}}\times\frac{\sqrt{7}-\sqrt{8}}{\sqrt{7}-\sqrt{8}}+\frac{1}{\sqrt{8}+\sqrt{9}}\times\frac{\sqrt{8}-\sqrt{9}}{\sqrt{8}-\sqrt{9}})\\\\3(\frac{\sqrt{1}-\sqrt{2}}{-1}+\frac{\sqrt{2}-\sqrt{3}}{-1}+\frac{\sqrt{3}-\sqrt{4}}{-1}+...+\frac{\sqrt{7}-\sqrt{8}}{-1}+\frac{\sqrt{8}-\sqrt{9}}{-1})

Similar questions