Math, asked by pinku252009006, 2 months ago

Solve the problems.
Find the median of first 10 even numbers?​

Answers

Answered by sourabhCr7
1

Answer:

10/2th +(10/2+1)th . Then, 5th + 6th/2 = 10+12/2= 11. It is the median.

Answered by Anonymous
18

\underbrace{\large{\underline{\sf Understanding \:  the  \: concept : }}}

To find median firstly we should arrange all the observation in ascending order then we should check the sequence and find middle term in that sequence of ascending order & If there are even number of observations there is no middle time right? So, We should check and find out the two middle observations and then divide it by 2.

⠀⠀⠀⠀

As we know that,

⠀⠀⠀⠀

 \sf {First  \: 10  \: Even \:  numbers} \begin{cases}  \sf{2,4,6,8,10,12,14,16,18,20 } \end {cases}

⠀⠀⠀⠀

\underline{\textbf{ \textsf{Finding \:  median :}}} \\  \\  \\  \sf  : \implies 2,4,6,8,10,12,14,16,18,20 \\  \\  \\  \sf :  \implies  \cfrac{1}{2}  \times (10 + 12) \\  \\  \\ \sf :  \implies  \cfrac{(10 + 12)}{2}  \\  \\  \\ \sf :  \implies  \cfrac{22}{2}  \\  \\  \\  \boxed{\bf :  \implies 11}

⠀⠀

Hence, The median of 1st ten even numbers is 11.

⠀⠀

\boxed {\begin{array}{cc}\\  \dag \: \underline{\Large\bf Formulas\:of\:Statistics} \\ \\ \bigstar \: \underline{\rm Mean:} \\ \\ \bullet\sf M=\dfrac {\Sigma x}{n} \\  \\ \bullet\sf M=a+\dfrac {\Sigma fy}{\Sigma f} \\ \\ \bullet\sf M=A +\dfrac {\Sigma fy^i}{\Sigma f}\times c \\ \\ \bigstar \: \underline{\rm Median :} \\ \\ \bullet\sf M_d=\dfrac {n+1}{2} \:\left[\because n\:is\:odd\:number\right] \\ \\  \bullet\sf M_d=\dfrac {1}{2}\left (\dfrac {n}{2}+\dfrac {n}{2}+1\right)\:\left[\because n\:is\:even\:number\right] \\ \\ \bullet\sf M_d=l+\dfrac {m-c}{f}\times i \\ \\ \bigstar \: {\boxed{\sf M_0=3M_d-2M}}\end {array}}

Similar questions