solve the problems please
Attachments:
Answers
Answered by
3
Solution
Given :-
- x = (3 + √5)/2
Find :-
- Value of x³ + 1/x³ .
Show That:-
- x + 1/x = 3.
Explanation
First Calculate, 1/x
==> 1/x = 1/(3+√5)/2
==> 1/x = 2/(3+√5)
Rationalize Denominator,
==> 1/x = 2(3-√5)/(3-√5)(3+√5)
==> 1/x = 2(3-√5)/(3²-√5²)
==> 1/x = 2(3-√5)/(9-5)
==> 1/x = 2(3-√5)/4
==> 1/x = (3-√5)/2.
Show, now take L.H.S.
= x + 1/x
keep value,
= (3+√5)/2 + (3-√5)/2
= [(3+√5) + (3-√5)]/2
= [(3+√5 + 3-√5)/2
= 6/2
= 3
R.H.S.
_________________________
Now, Calculate value of ( x³ + 1/x³)
==> (x³ + 1/x³) = [(3+√5)/2]³ + [(3-√5)/2]³
==> (x³ + 1/x³) = (3+√5)³/8 + (3-√5)³/8
==> (x³ + 1/x³) = [(3+√5)³+(3-√5)³]/8
==> (x³ + 1/x³) = [ (3³ + √5³ + 3×3²×√5 + 3×3×√5²)+(3³-√5³-3×3²×√5 + 3×3×√5²)]/8
==> (x³ + 1/x³) = [( 9 + 5√5 + 27√5 + 45)+(9 - 5√5 - 27√5+45)]/8
==> (x³ + 1/x³) = [ (54+32√5)+(54-32√5)]/8
==> (x³ + 1/x³) = 108)/8
==> (x³ + 1/x³) = 27/2.
Hence
- Value of (x³ + 1/x³) will be = 27/2 .
______________________
Similar questions