Math, asked by priyanshu4388, 11 months ago

solve the quadratic equation​

Attachments:

Answers

Answered by dupananani90
1

x+1(2x-5)=x-1(3x-7)

2x^2-5x+2x-5=3x^2-3x-7x+7

-3x=1x^2-10x+7+5

x^2-7x+12=0

by applying quadratic formula you get

x=4 or 3

Answered by kaushik05
129

 \huge \boxed{ \red{ \mathfrak{solution}}}

To solve :

  \bold{\frac{x + 1}{x - 1}  =  \frac{3x - 7}{2x - 5} } \\

By cross multiplication :

 \implies  (x + 1)(2x - 5) = (3x - 7)(x - 1) \\  \\  \implies 2 {x}^{2}  - 5x + 2x - 5 = 3 {x}^{2}  - 3x - 7x  + 7 \\  \\  \implies2 {x}^{2}   - 3x - 5 = 3 {x}^{2}  - 10x + 7 \\  \\  \implies \: 3 {x}^{2}  - 2 {x}^{2}  - 10x + 3x + 7 + 5 = 0 \\  \\  \implies \:  {x}^{2}  - 7x + 12 = 0

Now split the middle term :

 \star \:  {x}^{2}  - 7x + 12 = 0 \\  \\  \star \:  {x}^{2}  - 4x - 3x + 12  = 0\\  \\  \star \: x(x - 4) - 3(x - 4) = 0 \\  \\  \star \: (x - 3)(x - 4) = 0 \\   \\

 \star \: x - 3 = 0 \\  \\  \rightarrow \: x =3

And

 \star \: x - 4 = 0 \\  \\  \rightarrow \:x = 4

Hence ,the value of X is

  \huge \: \boxed{ \green{3 \:  \:  \mathfrak{ And} \:  \:  4}}

Similar questions