Math, asked by Lakshita567, 9 months ago

Solve the quadratic equation 2x ²78 +5=0 by completing the square method...

PLZZ help me ...

PLZZ solve this fast....

Attachments:

Answers

Answered by BrainlyConqueror0901
14

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{Value\:of\:x=1\:and\:\frac{5}{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline\bold{Given :}} \\  \tt: \implies  {2x}^{2}  - 7x + 5 = 0 \\  \\  \red{\underline\bold{To \: Find :}} \\  \tt:  \implies Value \: of \: x = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies  {2x}^{2}  - 7x + 5 = 0 \\  \\  \tt \circ \: Dividing \: both \: side \: by \: 2 \\  \\ \tt:  \implies  \frac{ {2x}^{2} }{2}  -  \frac{7x}{2}  +  \frac{5}{2}  = 0 \\  \\ \tt:  \implies  {x}^{2}  -  \frac{7x}{2}  +  \frac{5}{2}  = 0 \\  \\  \tt \circ \: Both \: side \: adding \:  (\frac{b}{2a})^{2}  =  (\frac{7}{2 \times 2} )^{2}  =  \frac{49}{16}  \\  \\ \tt:  \implies  {x}^{2}  -  \frac{7x}{2}  +  \frac{49}{16} +  \frac{5}{2}   =  \frac{49}{16}  \\  \\ \tt:  \implies  ({x  - \frac{7}{4} )}^{2}  =  \frac{49}{16}  -  \frac{5}{2}  \\  \\ \tt:  \implies  {(x  - \frac{7}{4} )}^{2}  =  \frac{49 - 40}{16}  \\  \\ \tt:  \implies  ({x -  \frac{7}{4}) }^{2}  =  \frac{9}{16}  \\  \\ \tt:  \implies x -  \frac{7}{4}  =  \sqrt{ \frac{9}{16} }  \\  \\ \tt:  \implies x -  \frac{7}{4}  =   \pm\frac{3}{4}  \\  \\ \tt:  \implies x =   \pm\frac{3}{4}  +  \frac{7}{4}  \\  \\  \tt:  \implies x =  \frac{7  \pm3}{4} \\  \\  \green{\tt:  \implies x = 1 \: and \:  \frac{5}{2} }

Answered by nitinsengar3
5
2x^2-7x+5=0

Divide both sides of the equation by 2 to have 1 as the coefficient of the first term :
x2-(7/2)x+(5/2) = 0

Subtract 5/2 from both side of the equation :
x2-(7/2)x = -5/2

x2-2(7/4)x = -5/2

x2-2(7/4)x +49/16= -5/2+49/16

(x-(7/4))^2 =( -40+49)/16

(x-(7/4))^2 = 9/16

(x-(7/4))^2 -9/16=0

(x-(7/4))^2 -(3/4)^2=0

(x-7/4-3/4) (x-7/4+3/4)=0

(x-10/4)(x-1)=0

x-10/4=0
x=10/4=5/2

x-1=0
x=1

Hopefully it’s helpful for you
Thanks

Similar questions