Math, asked by sweetgirl100, 9 months ago

Solve the quadratic equation 2x² – 7x + 3 = 0 by using quadratic formula.​

Answers

Answered by Anonymous
63

\huge\underline\mathrm{SOLUTION:-}

2x² - 7x + 3 = 0

On comparing the given equation with ax² + bx + c = 0, we get,

a = 2, b = -7 and c = 3

By using quadratic formula, we get,

x = [-b±√(b² – 4ac)]/2a

⇒ x = [7±√(49 – 24)]/4

⇒ x = [7±√25]/4

⇒ x = [7±5]/4

Therefore:

⇒ x = 7+5/4 or x = 7-5/4

⇒ x = 12/4 or 2/4

  • ∴ x = 3 or ½

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\thicklines\put(1,1){\line(1,0){6.5}}\put(1,1.1){\line(1,0){6.5}}\end{picture}

Answered by Anonymous
10

 \sf\large{x = 3 \: and \:  \frac{1}{2} }

Step-by-step explanation:

\bf\huge  {2x}^{2}  - 7x + 3 \\  \\  \sf\underline{using \: quadratic \:formula \mapsto:  }  \\  \sf\boxed{ x =  \frac{ - b . \sqrt{ {b}^{2}  - 4ac} }{2a}} \\  \\  \tt\  \therefore \: now \:  \:  {2x}^{2} - 7x + 3 \\  \\  \sf\  x \implies:  \frac{ - ( - 7). \sqrt{ {( - 7)}^{2}  - 4 \times 2 \times 3} }{2 \times 2}  \\  \\\sf\  x \implies: \frac{7. \sqrt{49 - 24} }{4}   \\  \\  \sf\  x \implies: \frac{7. \sqrt{25} }{4}  \\  \\\sf\  x \implies: \frac{7.5}{4}  \\  \\ \boxed{\tt{now}} \\  \\   \bf\ x =  \frac{7 + 5}{4}  \:  \:  \: or \:  \:  \:  \frac{7 - 5}{4}   \\   \\ \sf\   \implies x =  \frac{12}{4}  \:  \:  \: \:  \:  \:   \:  \:  \:  \:  \:  x\implies\frac{2}{4} \\  \\  \boxed{\sf\ \implies  x = 3} \:  \:  \:   \:  \:  \:  \:  \:   \boxed{x\implies \frac{1}{2} }

Similar questions