Math, asked by pawanparneetkaurp, 8 months ago

Solve the quadratic equation 3x^+11x+10=0 by quadratic formula

Answers

Answered by Anonymous
13

Quadratic equation -

\sf{\implies 3 {x}^{2} + 11x + 10 = 0 }\\

Quadratic formula -

\boxed{\sf{ \implies \:  \frac{ - b \pm \sqrt{ {b}^{2} - 4ac } }{2a} }} \\

Here , a = 3 ; b = 11 ; c = 10

Using the above mentioned formula :-

\sf{ \implies \:  \frac{ - 11 \pm \sqrt{( {11)}^{2} - 4(3)(10) } }{2(3)} } \\

 \sf{  \implies \frac{ - 11 \pm \sqrt{121 - 4(30)} }{6} } \\

 \sf{  \implies \frac{ - 11 \pm \sqrt{121 - 120} }{6} } \\

 \sf{  \implies \frac{ - 11 \pm \sqrt{1} }{6} } \\

 \sf{  \implies \frac{ - 11 \pm 1 }{6} } \\

Taking positive value :-

 \sf{  \implies \frac{ - 11 + 1  }{6} } \\

 \sf{  \implies \frac{ - 10 }{6} } \\

\sf{ \implies \: x \:  =  \frac{ \cancel{ - 10}}{ \cancel{6}}  =  \frac{ - 5}{3} } \\

Taking negative value :-

 \sf{  \implies \frac{ - 11 -1 }{6} } \\

 \sf{  \implies \frac{ - 12 }{6} } \\

 \sf{  \implies \: x =  -2 } \\

 \boxed{ \sf{ \red{ \implies \: x \:  =   - \frac{5}{3}  \: or \:  - 2}}} \\

Answered by MrChauhan96
11

\bf\blue{\boxed{Question}}

\:

\small\tt{Solve\:the\:quadratic\: equation\:}\\{\small\tt{3x^2+11x+10=0\:\:by\:quad \:formula.}}

\:

\bf\blue{\boxed{Solution}}

\:

\rm{\ 3x^{2}-11x+10\:=\:0}

\:

\rm\red{\boxed{x\:=\:\frac{-b±\sqrt{ \ b^{2}-4ac}}{2a}}}

\:

\rm{x\:=\:\frac{-11±\sqrt{ \ (11)^{2}-4(3)(10)}}{2\times 3}}

\:

\rm{x\:=\:\frac{-11±\sqrt{ 121-120}}{6}}

\:

\rm{x\:=\:\frac{-11±\sqrt{1}}{6}}

\:

\rm{x\:=\:\frac{-11±1}{6}}

\:

\small\rm{So\: there\:are\:two\:possible\:values.}

\:

\small\rm\blue{\underline{\boxed{1.)\:\:\:\: Positive}}}

\:

\rm{x\:=\:\frac{-11+1}{6}}

\:

\rm\red{\underline{\boxed{x\:=\:{\cancel\frac{-10}{\:\:\:6}}\:=\: {\frac{-5}{\:\:3}}}}}

\:

\small\rm\blue{\underline{\boxed{1.)\:\:\:\: Negative}}}

\:

\rm{x\:=\:\frac{-11-1}{6}}

\:

\rm\red{\underline{\boxed{x\:=\:\frac{-12}{\:\:\:\:6}\:=\: -2}}}

\:

\bf\blue{\boxed{Hope\:It\: Help\:You}}

Similar questions