Math, asked by nikunjtalan005881, 9 months ago

solve the quadratic equation 3x^2+5x+1=0 by method of completing the square​

Answers

Answered by silentlover45
7

 Given:-

  •  Quadratic \: equation :- \sf{3x^2 - 5x + 2}

 To \: find:-

  •  Value \: of \: x \: by \: completing \: the \: square \: method.

 Solution:-

 \sf{⇢3x^2 - 5x + 2}

 Divide \: the \: equation \: by \: 3

 ⇢ {3x}^{2}/{3} - {5x}/{3} + {2}/{3} = 0

 ⇢ {x}^{2} - {5x}/{3} + {2}/{3} = 0

 Add \: ({5}/{6})^{2} \: on \: both \: side \: of \: the \: equation.

 ⇢ {x}^{2} - 5x/3 + 25/36 = -2/3 + 25/36

 ⇢ ({x }+ {5}/{6})^{2} = {-2}/{3} + {25}/{36}

 ⇢ ({x} + {5}/{6})^{2} = {-24 + 25}/{36}

 ⇢ ({x} + {5}/{6})^{2} = {1}/{36}

 ⇢ \sf {x} + {5}/{6} = \sqrt[- +]\frac{1}{36}

 ⇢ \sf {x} = {1}/{6} - {5}/{6}

 ⇢ \sf {x} = {-4}/{6}

 ⇢ \sf {x} = {-2}/{3}

 Or

 ⇢ \sf {x} = {-1}/{6} - {5}/{6}

 ⇢ \sf {x} = {-6}/{6}

 ⇢ \sf {x} = {-1}

 x = 1 \: \: \: or \: \: \: x = \sf {-2}{3}

__________________________________

Similar questions