Math, asked by kuttusan, 1 year ago

solve the quadratic equation 3x²-4x+20/3=0​

Answers

Answered by qwmagpies
2

Thus, the roots of the equation are \frac{2  -  4 \sqrt{i} }{ 3}, \frac{2  +  4 \sqrt{i} }{ 3} .

Given:

The given equation is 3x²-4x+20/3=0.

To find:

The roots.

Solution:

The given equation is 3x²-4x+20/3=0.

Multiplying the equation by 3 we get-

9 {x}^{2}  - 12x + 20

Thus, the roots of the equation are given as follows-

x =  \frac{ - b +  \sqrt{ {b}^{2} - 4ac } }{2a}  \\ x =  \frac{ - b  -   \sqrt{ {b}^{2} - 4ac } }{2a}

Here a is 9, b is -12 and c is 20.

So, we can write-

x =  \frac{ - ( - 12) +  \sqrt{ {( - 12)}^{2} - 4  \times 9 \times 20 } }{2 \times 9} \\ x =  \frac{ + 12 +  \sqrt{144 - 720} }{18}  \\ x =  \frac{ + 12 +  \sqrt{ - 576} }{18}  \\ x =  \frac{12 + 24 \sqrt{i} }{18}  \\ x =  \frac{2 + 4 \sqrt{i} }{ 3}

Another root is given as-

x =  \frac{ - ( - 12)  -   \sqrt{ {( - 12)}^{2} - 4  \times 9 \times 20 } }{2 \times 9} \\ x =  \frac{ + 12  -  \sqrt{144 - 720} }{18}  \\ x =  \frac{ + 12  -   \sqrt{ - 576} }{18}  \\ x =  \frac{12  -  24 \sqrt{i} }{18}  \\ x =  \frac{2  -  4 \sqrt{i} }{ 3}

Thus, the roots of the equation are \frac{2  -  4 \sqrt{i} }{ 3}, \frac{2  +  4 \sqrt{i} }{ 3} .

#SPJ6

Answered by syed2020ashaels
1

We need to solve the given quadratic equation.

Given quadratic equation is

3 {x}^{2}  - 4x + 20 \div 3 = 0 \\ 3(3 {x}^{2}  - 4x + 20 \div 3) = 3 \times 0 \\ 9 {x}^{2}  - 12x + 20 = 0

We need to find the roots of this equation.

Formula to find the roots of this equation is

 - b +  \sqrt{ {b}^{2} - 4ac}  \div 2a \: and \:  - b -  \sqrt{ {b}^{2} - 4ac}  \div 2a

Here in this equation,

a = 9 \\ b =  - 12 \\ c = 20

Roots are,

 - ( - 12) +  \sqrt{ {12}^{2} - 4 \times 9 \times 20  }  \div 2 \times 9 \\ 12 +  \sqrt{144 - 720}  \div 18 \\ 12 +  \sqrt{ - 576 }  \div 18 \\ 12 +   \sqrt{ {i}^{2} \times  576}  \div 18 \\ 12 + 24i \div 18 \\ 2 + 4i \div 3

Similarly, another root is

2 - 4i \div 3

Therefore, roots of the given equation are

2 + 4i \div 3 \: and \: 2 - 4i \div 3

#SPJ2

Similar questions