Math, asked by dipikamajhi37, 2 months ago

solve the quadratic equation 3x²-x-7 = 0 give your answer correct to two decimal places​

Answers

Answered by jothlapurempcgtbc
1

Answer:

x=1.7032. or. x=-1.3699

Step-by-step explanation:

3x^2-x-7=0

a=3

b=-1

c=-7

x=1+-[√{(-1)^2-(4*3*-7)}]÷2*3

x=1+-[√(1+84)]÷6

x=1+-√85/6

x=1+√85/6. or. x=1-√85/6

x=(1+9.2195)/6. or. x=(1-9.2195)/6

x=1.7032. or. x=-1.3699

Attachments:
Answered by Anonymous
3

{ \boxed { \boxed{ \bold \red{Step \:  1 : }}}}

Use the quadratic formula

 \bold{x =  \frac{ - b \underline +  \sqrt{ {b}^{2} }   - 4ac}{2a} }

Once in standard form, identify a, b and c from the original equation and plug them into the quadratic formula.

 \bold{3x²-x-7 = 0}

a=3

b=-1

c=-7

 \bold{x =  \frac{-  ( - 1) \underline +  \sqrt{( - 1) {}^{2} } - 4 \times 3( - 7)  }{2  \times 3} }

{ \boxed { \boxed{ \bold \red{Step \:  2: }}}}

Simplify

Evaluate the exponent

Multiply the numbers

Add the numbers

Multiply the numbers

 \bold{x =   \frac{1 \underline +  \sqrt{85} }{6} }

{ \boxed { \boxed{ \bold \red{Step \:  3: }}}}

Separate the equations

To solve for the unknown variable, separate into two equations: one with a plus and the other with a minus.

 \bold{x =   \frac{1  +  \sqrt{85} }{6} }

 \bold{x =   \frac{1   -  \sqrt{85} }{6} }

{ \boxed { \boxed{ \bold \red{Step \:  4: }}}}

Solve

Rearrange and isolate the variable to find each solution

 \bold{x =   \frac{1  +  \sqrt{85} }{6} }

 \bold{x =   \frac{1   -  \sqrt{85} }{6} }

Solution:

 \bold{x =   \frac{1 \underline +  \sqrt{85} }{6} }

  \bold{\therefore \: x = 1.70 \:  or \:  -1.36 }(approx)

Therefore, correct upto 2 decimal places the value of x will be either 1.70 or -1.36(approx).

Similar questions