Math, asked by wwwragavendran2005, 8 months ago

Solve the quadratic equation 5×^2-6×-2 =0 0 by completing the square method​

Answers

Answered by XEVILX
8

Hey Pretty Stranger!

 \sf \: 5 {x}^{2}  - 6x - 2 = 0

Dividing by 5

 \sf \:  \dfrac{5 {x}^{2}  - 6x - 2}{5}  =  \dfrac{0}{5}

 \sf \:   {x}^{2}  -  \dfrac{6x}{5}  -  \dfrac{2}{5}  = 0

We know that,

★ ( a - b)² = a² - 2ab + b²

where a = x and

 \sf \:  - 2ab =  \frac{ - 6x}{5}

Put the value of a = x

 \sf \:  - 2xb =  \frac{ - 6x}{5}

 \sf \:  - 2b =  \dfrac{ - 6}{5}

 \sf \: b =  \dfrac{  3}{5}

Now ,

 \sf \:   {x}^{2}  -  \dfrac{6x}{5}  -  \dfrac{2}{5}  = 0

 \sf \:   {x}^{2}  -  \dfrac{6x}{5}  -  \dfrac{2}{5} + ( \dfrac{3}{5} )^{2}    - ( \dfrac{3}{5} ) ^{2}  = 0

 \sf \:   {x}^{2}  -  \dfrac{6x}{5}  + ( \dfrac{3}{5} )^{2}    -  \dfrac{2}{5}  -  ( \dfrac{3}{5} ) ^{2}  = 0

 \sf \:   (x -  \dfrac{3}{5} ) ^{2}  -  \dfrac{2}{5}  - ( \dfrac{3}{5} )^{2}  = 0

 \sf \:   (x -  \dfrac{3}{5} ) ^{2}   =   ( \dfrac{3}{5} )^{2} +  \dfrac{2}{5}

 \sf \:   (x -  \dfrac{3} {5} ) ^{2}   =   \dfrac{9}{25}  +  \dfrac{2}{5}

 \sf \:   (x -  \dfrac{3} {5} ) ^{2}   =    \dfrac{19}{25}

 \sf \:   (x -  \dfrac{3} {5} ) ^{2}   =     \dfrac{ { \sqrt{19} }^{2} }{ {5}^{2} }

 \sf \:   x -  \dfrac{3}{5}   =  \pm \:  \dfrac{ \sqrt{19} }{5}

i) Solving x - 3/5 = + √19/5

 \sf \: x -  \dfrac{3}{5}  =  \dfrac{ \sqrt{19} }{5}

 \sf \: x   =  \dfrac{ \sqrt{19} }{5}  +  \dfrac{3}{5 }

 \sf \: x =  \dfrac{ \sqrt{19 }  +  3}{5}

ii) Solving x - 3/5 = - √19/5

 \sf \: x -  \dfrac{3}{5}  =  -  \dfrac{ \sqrt{19} }{5}

 \sf \: x  =  -  \dfrac{ \sqrt{19} }{5}  +  \dfrac{3}{5}

 \sf \: x =  \dfrac{ -  \sqrt{19  }   + 3}{5}

So,

 \sf \: x =  \dfrac{   \sqrt{19  }   + 3}{5}   \: and \:  \dfrac{ -  \sqrt{19  }   + 3}{5}

are the roots of the equation.

Similar questions