Math, asked by NainaMehra, 1 year ago

Solve the quadratic equation 9x^2 - 15x + 6 = 0 by method of Completing the square.

Answers

Answered by abhi569
149
Given equation : 9x² - 15x + 6 = 0

\therefore 3x^{2} - 5x + 2 = 0



Solving the given equation according to the method of completing square.

Step 1 : Dividing the whole equation by the co efficient of x², in the question coefficient of x² is 3.
\therfore \text{Dividing the whole equation by 3 }



 \rightarrow \:  \dfrac{3x^{2} - 5x + 2  }{3} =  \dfrac{0}{3}  \\  \\   \\  \rightarrow  {x}^{2}  -  \dfrac{5x}{3}  +  \dfrac{2}{3}  = 0 \\  \\  \\ \rightarrow  {x}^{2}  -  \dfrac{5}{3} x =   -   \dfrac{2}{3}

.

Step 2 : adding ( 5 / 6 )² on both sides.


\rightarrow  {x}^{2}  -  \dfrac{5x}{3}  +   \bigg( \dfrac{5}{6}  \bigg) {}^{2}  =  -   \dfrac{2}{3}   +  \bigg( \dfrac{5}{6}  \bigg) {}^{2}


a² - 2ab + b² = ( a - b )²
By Using the formula given above.
{x}^{2}  -  \dfrac{5x}{3}  +   \bigg( \dfrac{5}{6}  \bigg) {}^{2} = \bigg( x - \dfrac{5}{3} \bigg)^{2}


 \rightarrow \bigg( x - \dfrac{5}{6} \bigg)^{2} =  \dfrac{ - 2}{3}  +  \dfrac{25}{36}  \\  \\  \\  \rightarrow \bigg( x - \dfrac{5}{6} \bigg)^{2} =   \dfrac{ - 24 + 25}{36} \\  \\  \\ \rightarrow \bigg( x - \dfrac{5}{6} \bigg)^{2} =   \dfrac{1}{36} \\  \\  \\ \rightarrow \bigg( x - \dfrac{5}{6} \bigg) =  \pm  \dfrac{ 1}{6} \\  \\  \\  \rightarrow  \: x =  \frac{1}{6}  +  \dfrac{5}{6}  \:  \: or \:  \:  \dfrac{5}{6}  -  \dfrac{1}{6}




\rightarrow x = 1 or \dfrac{2}{3}





NainaMehra: Thanks
abhi569: welcome
Answered by siddhartharao77
76

Given Equation is 9x^2 - 15x + 6 = 0.

(i)

Divide throughout by 9.

⇒ x^2 - (15/9) x + (6/9) = 0

⇒ x^2 - (5/3) x + (2/3) = 0


(ii)

Rewrite the equation with the constant term on the right side.

⇒ x^2 - (5/3) x = -2/3


(iii)

Complete the square by adding the square of one-half of coefficient.

⇒ x^2 - (5/3)x  + (5/6)^2 = -2/3 + (5/6)^2

⇒ x^2 - (5/3) x + (5/6)^2 = 1/36


(iv)

Write the left side as square.

⇒ (x - 5/6)^2 = 1/36

⇒ x - 5/6 = √1/36

⇒ x - 5/6 = 1/6


(v)

Equate and solve.

(a)

⇒ x - 5/6 = 1/6

⇒ x = 1/6 + 5/6

⇒ x = 1.


(b)

⇒ x - 5/6 = -1/6

⇒ x = -1/6 + 5/6

⇒ x = 2/3.


Therefore, roots are 1 and 2/3.


Hope it helps!


NainaMehra: Thanks
siddhartharao77: wlcm
Similar questions