Math, asked by Akashtiwari9116, 10 months ago

Solve the quadratic equation 9x2-9x+2=0 completing square method

Answers

Answered by Anonymous
2

Answer:

⅓ and ⅔

Step-by-step explanation:

Given a quadratic equation such that,

9 {x}^{2}  - 9x + 2 = 0

To solve this fir x.

We need to follow completing square method.

Therefore, we will get,

 =  >  {(3x)}^{2}  - 2  (3x)( \frac{3}{2} ) +  {( \frac{3}{2} )}^{2}  + 2 -  {( \frac{3}{2}) }^{2}  = 0

But, we know that,

  • a^2 -2ab + b^2 = (a-b)^2

Therefore, we will get,

 =  >  {(3x -  \frac{3}{2} )}^{2}  + 2 -  \frac{9}{4}  = 0 \\  \\  =  >  {(3x -  \frac{3}{2}) }^{2} +  \frac{8 - 9}{4}   = 0 \\  \\  =  >  {(3x -  \frac{3}{2}) }^{2}  -  \frac{1}{4}  = 0 \\  \\  =  >  {(3x -  \frac{3}{2}) }^{2}  =  \frac{1}{4}  \\  \\  =  > 3x -  \frac{3}{2}  =  \pm \frac{1}{2}  \\  \\  =  > 3x =  \frac{3}{2}  \pm \frac{1}{2}  \\  \\  =  > 3x = 2 \: \:   \: and \:  \:  \: 1 \\  \\  =  > x =  \frac{1}{3}  \:  \: and \:  \:  \frac{2}{3}

Hence, the value of x is and ⅓.

Answered by BrainlyMT
3

Given:-

{9x} ^{2} - 9x+2=0

By method of Completing square:-

 {(3x)}^{2} - 2 (3x)( \frac{3}{2} ) + {( \frac{3}{2} )}^{2} + 2 - {( \frac{3}{2}) }^{2} = 0

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

⇝ {(3x - \frac{3}{2} )}^{2} + 2 - \frac{9}{4} = 0 \\ ⇝ {(3x - \frac{3}{2}) }^{2} + \frac{8 - 9}{4} = 0 \\ ⇝ {(3x - \frac{3}{2}) }^{2} - \frac{1}{4} = 0 \\ ⇝ {(3x - \frac{3}{2}) }^{2} = \frac{1}{4} \\  ⇝3x - \frac{3}{2} = \pm \frac{1}{2} \\ ⇝3x = \frac{3}{2} \pm \frac{1}{2} \\⇝  3x = 2  \: and \: 1 \\ ⇝ x = \frac{1}{3}  \: and \:  \frac{2}{3}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\red{x= \frac{2}{3}~and~\frac{1}{3}}.

Similar questions