Math, asked by vedantrathod3721, 10 months ago

solve the quadratic equation by completing square
3p²+7p+1=0​

Answers

Answered by dna63
8

\sf{\large{\underline{\underline{EXPLANATION:}}}}

★Given,,

\sf{3p^{2}+7p+1=0}

★Now,, Using complete square method,,

\sf{\implies{(\sqrt{3}p)^{2}+2\times{\sqrt{3}p}\times{\frac{7}{2\sqrt{3}}+(\frac{7}{2\sqrt{3}})^{2}}+1=(\frac{7}{2\sqrt{3}})^{2}}}

\sf{\implies{(\sqrt{3}p+\frac{7}{2\sqrt{3}})^{2}=(\frac{7}{2\sqrt{3}})^{2}-1}}

\sf{\implies{(\sqrt{3}p+\frac{7}{2\sqrt{3}})^{2}=\frac{49}{12}-1}}

\sf{\implies{(\sqrt{3}p+\frac{7}{2\sqrt{3}})^{2}=\frac{49-12}{12}}}

\sf{\implies{(\sqrt{3}p+\frac{7}{2\sqrt{3}})^{2}=\frac{37}{12}}}

\sf{\implies{\sqrt{3}p+\frac{7}{2\sqrt{3}}=\pm\sqrt{\frac{37}{12}}}}

\sf{\implies{\sqrt{3}p=\frac{7}{2\sqrt{3}}\pm\{\frac{\sqrt{37}}{2\sqrt{3}}}}

\sf{\implies{\sqrt{3}p=\frac{7\pm\sqrt{37}}{2\sqrt{3}}}}

\sf{\implies{p=\frac{7\pm\sqrt{37}}{2\sqrt{3}\times{\sqrt{3}}}}}

\sf{\implies{p=\frac{7\pm\sqrt{37}}{6}}}

★Therefore,,

\sf{\implies{p=\frac{7+\sqrt{37}}{6}\:\:or\:\frac{7-\sqrt{37}}{6}}}

\rule{200}2

Hope it helps ❣️❣️❣️

Similar questions