Math, asked by Anonymous, 4 months ago

solve the quadratic equation by completing square
\sf 6x^2+11x+3=0

Answers

Answered by NewGeneEinstein
13

Answer:

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 6x^2+11x+3 =0

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 6x^2+11x=-3

  • multiply both sides by 2a

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 24 (6x^2+11x)=24 (-3)

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 144x^2+264x=-72

\\\qquad\quad\displaystyle\sf {:}\longrightarrow (12x)^2+2.12x.11=-72

  • Adding b^2 both sides

\\\qquad\quad\displaystyle\sf {:}\longrightarrow (12x)^2+2.12x.11+(11)^2=(11)^2-72

\\\qquad\quad\displaystyle\sf {:}\longrightarrow (12x+11)^2=121-72

\\\qquad\quad\displaystyle\sf {:}\longrightarrow (12x+11) ^2=49

  • taking square roots

\\\qquad\quad\displaystyle\sf {:}\longrightarrow \sqrt {(12x+11)^2}=\sqrt {49}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 12x+11=\underline{+}49

\\\qquad\quad\displaystyle\sf {:}\longrightarrow 12x=\underline{+}49-11

\\\qquad\quad\displaystyle\sf {:}\longrightarrow x=\dfrac {\underline{+}49-11}{12}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow x=\dfrac {49-11}{12}\quad or\quad x=\dfrac {-49-11}{12}

\\\qquad\quad\displaystyle\sf {:}\longrightarrow x=\dfrac {38}{12}\quad or\quad x=\dfrac {-60}{12}

\\\qquad\quad\displaystyle\sf\underline{\boxed{\blue {\bf  {:}\longrightarrow x=\dfrac {19}{12}\quad or -5}}}

Similar questions