solve the quadratic equation by factorisation method (2x+3)²=25
Answers
Answered by
1
Step-by-step explanation:
Here's what you were searching for
Attachments:
Answered by
17
FORMULA TO KNOW:-
( a + b )² = a² + b² + 2ab
Now lets do Problem using this identity
(2x + 3)² = 25
(2x)² + (3)² + 2(2x)(3) = 25
4x² + 9 + 12x = 25
4x² + 12x + 9 -25 = 0 (Transpose 25 to RHS)
4x² + 12x - 16 = 0
Now solve the quadratic eqaution by splitting middle term
4x² + 16x - 4x -16 =0
4x(x + 4) -4(x + 4) =0
(x + 4) ( 4x -4) =0
x + 4 =0
x = - 4
4x - 4 =0
4x = 4
x = 1
So,Required values of -4 , 1
VERIFICATION
by substuiting values of x should equal to LHS=RHS
CASE -1 At x= -4
(2x + 3)² = 25
(2(-4) + 3 )² = 25
( -8 + 3)² = 25
(-5)² = 25
25 = 25
Case 1 verified
CASE -2
(2x + 3)² = 25
(2(1) + 3)² =25
(5)² = 25
25 = 25 Hence both cases verified
FINAL ANSWER SO VALUE OF X IS -4,1
Similar questions