Solve the Quadratic equation by Factorization.
Answers
Answered by
32
Hey there !!
▶ Question 1 :-
4x² - 4a²x + ( a⁴ - b⁴ ) = 0.
We write, -4a²x = -2( a² + b² )x - 2( a² - b² )x .
Because, 4x² × ( a⁴ - b⁴ ) = 4( a⁴ - b⁴ )x².
= [ -2( a² + b² )]x × [ -2( a² - b² )]x .
•°• 4x² - 4a²x + ( a⁴ - b⁴ ) = 0.
=> 4x² -2( a² + b² )x -2( a² - b² )x + ( a² - b² ) ( a² + b² ) = 0.
=> 2x[ 2x - ( a² + b² )] - ( a² - b² )[ 2x - ( a² + b² )] = 0.
=> [ 2x - ( a² + b² ) ] [ 2x - ( a² - b² ) ] = 0.
=> 2x - ( a² + b² ) = 0 or 2x - ( a² - b² ) = 0.
•°• x = ( a² + b² )/2 or x = ( a² - b² )/2 .
▶ Question 2 :-
9x² - 9( a + b )x + ( 2a² + 5ab + 2b² ) = 0.
We write, -9( a + b )x = -3( 2a + b )x - 3( a +2b )x.
Because, 9x² × ( 2a² + 5ab + 2b² ) = 9( 2a² + 5ab + 2b² )x² .
= [ -3 ( 2a + b )x ] × [ -3( a + 2b )x ] .
•°• 9x² - 9( a + b )x + ( 2a² + 5ab + 2b² ) = 0.
=> 9x² -3( 2a + b )x - 3( a + 3b )x + ( 2a + b )( a + 2b ) = 0.
=> 3x[ 3x - ( 2a + b ) ] - ( a + 2b) [ 3x - ( 2a + b ) ] = 0.
=> [ 3x - ( 2a + b ) ] [ 3x - ( a + 2b ) ] = 0.
=> 3x - ( 2a + b ) = 0 or 3x - ( a + 2b ) = 0.
=> x = or x =
✔✔ Hence, it is solved ✅✅.
____________________________________
THANKS
#BeBrainly.
▶ Question 1 :-
4x² - 4a²x + ( a⁴ - b⁴ ) = 0.
We write, -4a²x = -2( a² + b² )x - 2( a² - b² )x .
Because, 4x² × ( a⁴ - b⁴ ) = 4( a⁴ - b⁴ )x².
= [ -2( a² + b² )]x × [ -2( a² - b² )]x .
•°• 4x² - 4a²x + ( a⁴ - b⁴ ) = 0.
=> 4x² -2( a² + b² )x -2( a² - b² )x + ( a² - b² ) ( a² + b² ) = 0.
=> 2x[ 2x - ( a² + b² )] - ( a² - b² )[ 2x - ( a² + b² )] = 0.
=> [ 2x - ( a² + b² ) ] [ 2x - ( a² - b² ) ] = 0.
=> 2x - ( a² + b² ) = 0 or 2x - ( a² - b² ) = 0.
•°• x = ( a² + b² )/2 or x = ( a² - b² )/2 .
▶ Question 2 :-
9x² - 9( a + b )x + ( 2a² + 5ab + 2b² ) = 0.
We write, -9( a + b )x = -3( 2a + b )x - 3( a +2b )x.
Because, 9x² × ( 2a² + 5ab + 2b² ) = 9( 2a² + 5ab + 2b² )x² .
= [ -3 ( 2a + b )x ] × [ -3( a + 2b )x ] .
•°• 9x² - 9( a + b )x + ( 2a² + 5ab + 2b² ) = 0.
=> 9x² -3( 2a + b )x - 3( a + 3b )x + ( 2a + b )( a + 2b ) = 0.
=> 3x[ 3x - ( 2a + b ) ] - ( a + 2b) [ 3x - ( 2a + b ) ] = 0.
=> [ 3x - ( 2a + b ) ] [ 3x - ( a + 2b ) ] = 0.
=> 3x - ( 2a + b ) = 0 or 3x - ( a + 2b ) = 0.
=> x = or x =
✔✔ Hence, it is solved ✅✅.
____________________________________
THANKS
#BeBrainly.
NainaMehra:
Perfect answer!!
Similar questions
Math,
7 months ago
Psychology,
7 months ago
Social Sciences,
7 months ago
English,
1 year ago
Chemistry,
1 year ago