Math, asked by noopursakpal, 2 months ago

solve the quadratic equation by formula method.
4 {z}^{2}  +   \frac{6}{ {z}^{2}  } \:  = 11
Please it's urgent...​

Answers

Answered by astronutastronut3
0

Answer:

tex]4 {z}^{2} + \frac{6}{ {z}^{2} } \: = 11[/tex]

answer

Answered by SweetLily
5

Topic

Quadratic equations

Solution

 \sf{4 {z}^{2} + \dfrac{6}{ {z}^{2}} = 11}

Let us assume z² as y

So substitute z² with y

 \sf{ \implies \: 4y +\dfrac{6}{y}=11}

 \sf{  \implies4y +\dfrac{6}{y}-11=0}

⠀️️️️️️

Take L.CM

⠀️️️️️️

 \sf{ \implies \dfrac{4y²+6-11y}{y}=0}

 \sf{ \implies4y²+6-11y}=0

⠀️️️️️️

Now solve the quadratic equation by formula method

 \mathtt { a= 4 ,  \: b = -11 ,  \: c= 6}

⠀️️️️️️

 \bold{D= b²-4ac}

⠀️️️️️️

 \sf{ \to \:D= (-11)²-4×4×6} \\  \\ \sf{ \to \:D= 121-96}

 \sf{ \to \red{D = 25}}

⠀️️️️️️

\bold{x=\dfrac{-b-√D}{2a}\:\:or\:  </p><p>\:\dfrac{-b+√D}{2a}}

⠀️️️️️️

 \sf{ \implies \: y=\dfrac{-(-11)-√25}{2×4}  \:  \: or   \:  \: \dfrac{-(-11)+√25}{2×4}}

\sf{ \implies \: y = \dfrac{11-5}{8} \:  \:  or   \:  \: \dfrac{11+5}{8}} \\  \\ \sf{ \implies \: y= \dfrac{6}{8}  \:  \: or \:  \: \dfrac{16}{8}}

⠀️️️️️️

 \sf{ \implies \: y=  \dfrac{3}{4}  \:  \: or \:  \:  2}

 \sf{ \implies \: z²= y = \dfrac{3}{4}  \:  \: or  \:  \: 2}

⠀️️️️️️

\sf{ \implies \: z =  ± \sqrt{ \frac{3}{4} }  } \:  \: or  ±\sqrt{2}  \\  \\  \sf{ \implies \red{z =   \frac{ \sqrt{3} }{2} , -  \frac{ \sqrt{3} }{2} , \sqrt{2} , -  \sqrt{2} }}

----------------------------------------------------

Similar questions