Math, asked by nisha2371adhikari, 8 months ago

solve the quadratic equation by shreedhracharya's rule x²-(√3+1)+√3=0​

Answers

Answered by jaidansari248
1

Answer:

there \: are \: two \: root \: of \: x \\ in \: quadratic \: equation \\ x1 =  \frac{ - b +  \sqrt{d} }{2a}  \\ x2 =   \frac{ - b -  \sqrt{d} }{2a}  \\ where \: d \: is \: discriminant \:   \\ =  \sqrt{ {b}^{2}  - 4ac}  \\ a = coeffient \: of \:  {x}^{2}  \\ b = coeffient \: of \: x \\ c = constant \: term

Step-by-step explanation:

a = 1 \\ b =  - ( \sqrt{3}  + 1) \\ c =  \sqrt{3}  \\ then \: d =  \sqrt{ ({ \sqrt{3}  + 1)}^{2}  - 4 \times 1 \times  \sqrt{3} }  \\  = \sqrt{3 + 2 \sqrt{3} + 1 - 4 \sqrt{3}  }   \\  =  \sqrt{3 - 2 \sqrt{3} + 1 }  \\  =  \sqrt{( \sqrt{3} - 1) ^{2}   }  \\  =  \sqrt{3}  - 1 \\ x1 =  \frac{ -  \sqrt{3}  + 1 -  \sqrt{3 }  + 1}{2}  \\  =   - \sqrt{3}  + 1 \\ and \\ x2 =  (-  \sqrt{3}  + 1 +  \sqrt{3}   - 1) \div 2 = 0

Similar questions