Math, asked by sitabista822, 1 month ago

solve the quadratic equation by the
6x  ^{2}  + x - 2 = 0
method of completing the perfect square : 1)6x^2+x- 2=0

Answers

Answered by Sanju1534
4

Answer:

 {6x}^{2}  + x - 2 = 0

 {6x}^{2}  + (4 - 3)x - 2 = 0

 {6x}^{2}  + 4x - 3x - 2 = 0

2x(3x + 2) - 1(3x + 2) = 0

(3x + 2)(2x - 1) = 0

(3x + 2) = 0 \: and \: (2x - 1) = 0

3x =  - 2 \: and \: 2x = 1

x = -2/3 and x = 1/2

Ans. -2/3, 1/2

Hope it helps.

Answered by ManishShah98
12

\small\red{\boxed{Question  = 6 {x}^{2}  + x - 2  = 0}.} \\  \\ \small\orange{\underline{\underline{solution}} :  - } \\  \\  \color{purple}6 {x}^{2}  + x - 2 = 0 \\  \\ \color{purple}6 {x}^{2}  +( 4 - 3)x - 2 = 0 \\  \\ \color{purple}6 {x}^{2}  + 4x - 3x  - 2 = 0 \\  \\ \color{purple}  2x(3x + 2) - 1(3x  + 2) = 0 \\  \\ \color{purple}(2x - 1)(3x + 2) = 0 \\  \\ \color{purple}2x - 1 = 0 \:  \:  ,  \:  \: 3x + 2 = 0 \\  \\  \color{purple}2x = 1 \:  \: , \:  \: 3x =  - 2 \\  \\ \color{purple}x =  \frac{1}{2}  \:  \: , \:  \: x =   \frac{ - 2}{3}  \\  \\ \small\green{\boxed{x =  \frac{1}{2} and \frac{ -2 }{3} \:  \: is \: the \: answer }} \\  \\ \small\pink{\boxed{\boxed{it's ᭄亗 乄 MꫝղᎥនh 乄 亗✯❤࿐}}}

Answered by ManishShah98
18

\small\red{\boxed{Question  = 6 {x}^{2}  + x - 2  = 0}.} \\  \\ \small\orange{\underline{\underline{solution}} :  - } \\  \\  \color{purple}6 {x}^{2}  + x - 2 = 0 \\  \\ \color{purple}6 {x}^{2}  +( 4 - 3)x - 2 = 0 \\  \\ \color{purple}6 {x}^{2}  + 4x - 3x  - 2 = 0 \\  \\ \color{purple}  2x(3x + 2) - 1(3x  + 2) = 0 \\  \\ \color{purple}(2x - 1)(3x + 2) = 0 \\  \\ \color{purple}2x - 1 = 0 \:  \:  ,  \:  \: 3x + 2 = 0 \\  \\  \color{purple}2x = 1 \:  \: , \:  \: 3x =  - 2 \\  \\ \color{purple}x =  \frac{1}{2}  \:  \: , \:  \: x =   \frac{ - 2}{3}  \\  \\ \small\green{\boxed{x =  \frac{1}{2} and \frac{ -2 }{3} \:  \: is \: the \: answer }} \\  \\ \small\pink{\boxed{\boxed{it's ᭄亗 乄 MꫝղᎥនh 乄 亗✯❤࿐}}}

Similar questions