Math, asked by sara112733, 5 days ago

solve the quadratic equation by using formula 5m²+5m=1

Answers

Answered by bjaat5623
8

Answer:

may it helps you

Step-by-step explanation:

be happy

Attachments:
Answered by steffiaspinno
0

The roots of 5m²+5m-1 are  \alpha =\frac{-5+3\sqrt{5} }{10} and  \beta =\frac{-5-3\sqrt{5} }{10}

Explanation:

Given:

5m²+5m=1

To find:

The roots

Formula:

\alpha =\frac{-b+\sqrt{b^2-{4ac} } }{2a}

\beta =\frac{-b-\sqrt{b^2{-4ac} } }{2a}

Solution:

==>  5m²+5m=1

==>  5m²+5m-1 =0

==> a = coefficient of m²

==> b = Coefficient of m

==> c = constant

==> a = 5

==> b = 5

==> c = -1

==> Substitute the values in the formula

==> \alpha =\frac{-b+\sqrt{b^2-{4ac} } }{2a}

==> \alpha =\frac{-5+\sqrt{5^2{-4(5)(-1)} } }{2(5)}

==> \alpha =\frac{-5+\sqrt{25 {-4(-5)} } }{10}

==> \alpha =\frac{-5+\sqrt{25 {+20} } }{10}

==> \alpha =\frac{-5+\sqrt{45 } }{10}

==> \alpha =\frac{-5+\sqrt{5\times3\times3} }{10}

==> \alpha =\frac{-5+3\sqrt{5} }{10}

==> \beta =\frac{-b-\sqrt{b^2-{4ac} } }{2a}

==> \beta =\frac{-5-\sqrt{5^2{-4(5)(-1)} } }{2(5)}

==> \beta =\frac{-5-\sqrt{25 {-4(-5)} } }{10}

==> \beta =\frac{-5-\sqrt{25 {+20} } }{10}

==> \beta =\frac{-5-\sqrt{45 } }{10}

==> \beta =\frac{-5-\sqrt{5\times3\times3} }{10}

==> \beta =\frac{-5-3\sqrt{5} }{10}

The roots of 5m²+5m-1 are  \alpha =\frac{-5+3\sqrt{5} }{10} and  \beta =\frac{-5-3\sqrt{5} }{10}

Similar questions