Math, asked by Anonymous, 4 months ago

solve the quadratic equation by using quadratic formula x2+11x-80=0​

Answers

Answered by MrHyper
10

\huge\color{red}{\bf{Question:}}

 \bf Solve \: the \: quadratic \: equation \\  \bf using \: quadratic \: formula \\  \bf  {x}^{2} + 11x - 80 = 0

\huge\color{red}{\bf{Answer:}}

 \bf Quadratic \: formula :  \\  \\  \bf  \frac{ - b ±  \sqrt{ {b}^{2}  - 4ac} }{2a}  \\  \\  \bf Here \: a = 1, \:  \:  \:  \: b = 11, \:  \:  \:  \: c =  - 80 \\  \\  \bf  {b}^{2}  - 4ac =  ({11})^{2}  - 4(1)( - 80) \\  \bf = 121 + 320 \\  \bf = 441 \\  \bf \therefore  \sqrt{ {b}^{2} - 4ac }  =  \sqrt{441}  = 21 \\  \\  \bf  \therefore \frac{- (11) ± 21}{2(1)} \\  \\  \bf =  \frac{ - 11 + 21}{2}  \:  \:  \:  \:  \frac{ - 11 - 21}{2}  \\  \\  \bf =  \frac{ - 10}{2}  \:  \:  \:  \:  \:  \frac{ - 32}{2}  \\  \\  \bf =  - 5 \:  \:  \:  \:  \:  - 16 \\  \therefore \bf The \: roots \: are :  \\  \bf  - 5 \:  \:  \: and \:  \:    - 16

\huge\color{red}{\bf{Hope~it~helps..!!}}

Similar questions