Math, asked by Anonymous, 8 months ago

solve the quadratic equation using formuale
\sf \implies x^2 - 10x + 21 = 0

Answers

Answered by Hɾιтհιĸ
34

x =( -b ± √(b2 - 4ac) ) / 2a

x = ( -(-10) ± √((-10)2 - 4121) ) / 2*1

= ( 10 ± √ 100 - 84 ) / 2 = ( 10 ± √ 16 ) 2 = (10 ± √ 16 ) / 2

= (10 ± 4 ) / 2

Solving this will give us the following two solutions:

x = (10 + 4) /2 = 14/2 = 7

x = (10 - 4) /2 = 6/2 = 3

Answered by InfiniteSoul
2

\sf{\underline{\boxed{\green{\large{\bold{ Question}}}}}}

  • solve the equation using formulae  \sf x^2 - 10x + 21 = 0

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\green{\large{\bold{ Solution}}}}}}

\sf\implies x^2 - 10x + 21 = 0

⠀⠀⠀⠀⠀⠀⠀

  • compare the eq with \sf{\underline{\bold{ax^2 + bx + c = 0 }}}

⠀⠀⠀⠀⠀⠀⠀

☯ a = 1

☯ b = -10

☯ c = +21

⠀⠀⠀⠀⠀⠀⠀

now :-

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{x =  \dfrac{ - b \pm \sqrt D }{2a }}}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\pink{\large{\mathfrak{ D =  b^2 - 4ac }}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • finding value of D.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies D = b^2 - 4ac

\sf\implies D = (-10)^2 - 4 \times 1 \times +21

\sf\implies D = 100 - 84

\sf\implies D = 16

\sf{\underline{\boxed{\blue{\large{\bold{ D = 16}}}}}}

⠀⠀⠀⠀⠀⠀⠀

  • putting values in the eq.

⠀⠀⠀⠀⠀⠀⠀

\sf\implies x = \dfrac{ -b \pm\sqrt D }{2a}

\sf\implies x = \dfrac{ -( -10)  \pm\sqrt {16} }{2\times 1 }

\sf\implies x = \dfrac{ 10 \pm 4 }{2}

⠀⠀⠀⠀⠀⠀⠀

\sf x = \dfrac{ 10 + 4 }{ 2 }

\implies x =  \dfrac {14}{2}

\implies x = 7

\sf{\underline{\boxed{\purple{\large{\bold{ x = 7 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

⠀⠀⠀⠀⠀⠀⠀

\sf x = \dfrac{ 10 - 4  }{ 2 }

\implies x =  \dfrac {6}{2}

\implies x = 3

\sf{\underline{\boxed{\purple{\large{\bold{ x = 3 }}}}}}

⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\boxed{\purple{\large{\bold{ x = 7 \: or \:3 }}}}}}

Similar questions