Math, asked by lMsImperfectl, 9 months ago

solve the quadratic equation using formulae
\sf\implies x^2 = 18x - 77

Answers

Answered by TheVenomGirl
25

AnSwer:

  • The value of x is 11 or 7.

━━━━━━━━━━━━━━━

GiVen :

  • \sf x^2 = 18x - 77 is the given eqn.

SoluTion :

Let us solve the eqn now,

\sf\longmapsto \:  \:  x^2  = 18x - 77 \\  \\ \sf\longmapsto \:  \: x^2 - 18x + 77 = 0

In this above eqn we can observe the same form of eqn as,

☢⠀\:  \: {\boxed{\sf{ \: ax^2 + bx + c = 0 }}}

Now, we know that, ⠀⠀⠀⠀

  • a = 1
  • b = -18
  • c = 77

━━━━━━━━━━━━━━

Now, let us find the discriminant,

☢⠀\:  \:  \: {\boxed{\purple{\large{\sf{x =  \dfrac{ \:  \:  - b \pm \sqrt D }{2a \:  \: }}}}}}

☢⠀\:  \:  \: {\boxed{\red{\large{\sf{  \: D =  b^2 - 4ac \:  }}}}}

━━━━━━━━━━━━━━

By using the above formulas,

 \sf\longmapsto \:  \:  D = b^2 - 4ac

\sf\longmapsto \:  \:  D = (-18)^2 - 4 \times 1 \times 77

\sf\longmapsto \:  \:   D = 324  -  308

\sf\longmapsto \: \:  { \underline{ \boxed{ \sf{ \blue{ \bold{ \: D = 16 \: }}}}}} \:  \bigstar

━━━━━━━━━━━━━━

Now, substitute the value of D in the above formula,

\sf\longmapsto \:  \:  x = \dfrac{ -b \pm\sqrt D }{2a} \\ \\  \sf\longmapsto \:  \:  x = \dfrac{ -( -18)  \pm\sqrt {16} }{2\times 1 } \\  \\ \sf\longmapsto  \:  \: x = \dfrac{ 18 \pm 4 }{2}

━━━━━━━━━━━━━━

In this condition, there may be 2 values of x, that is,

\sf \longmapsto \:  \: x = \dfrac{ 18 + 4 }{ 2 } \\  \\ \sf\longmapsto x =  \dfrac {22}{2} \\ \\\sf \longmapsto { \underline{ \boxed{ \pink{ \sf{ \bold{ \: x = 11 \:  }}}}}} \:  \bigstar

━━━━━━━━━━━━━━

Similarly, 2nd value of x would be,

\sf \longmapsto \:  \:  x = \dfrac{ 18 - 4  }{ 2 } \\  \\  \sf \longmapsto \:  \: x =  \dfrac {14}{2} \\  \\  \sf \longmapsto \:  \: { \underline{ \boxed{ \red{ \sf{ \bold{ \: x = 7 \: }}}}}} \:  \bigstar

Therefore,

  • x = 11 or x = 7

━━━━━━━━━━━━━━━


Anonymous: good :p
Answered by TheProphet
5

Solution :

We have quadratic equation p(x) = x² = 18x - 77

Zero of the polynomial p(x) = 0

x² - 18x + 77 = 0

As we know that given above equation compared with ax² + bx + c;

  • a = 1
  • b = -18
  • c = 77

\underline{\boldsymbol{Using\:by\:quadratic\:formula\::}}}

\boxed{\bf{x=\frac{-b\pm\sqrt{b^{2} - 4ac} }{2a} }}}}

\longrightarrow\tt{x=\dfrac{-(-18)\pm\sqrt{(-18)^{2} -4\times 1\times 77} }{2\times 1} }\\\\\\\longrightarrow\tt{x=\dfrac{18\pm\sqrt{324-308} }{2} }\\\\\\\longrightarrow\tt{x=\dfrac{18\pm \sqrt{16} }{2}} \\\\\\\longrightarrow\tt{x=\dfrac{18\pm 4}{2} }\\\\\\\longrightarrow\tt{x=\dfrac{18 + 4}{2} \:\:\:Or\:\:\:x=\dfrac{18-4}{2} }\\\\\\\longrightarrow\tt{x=\cancel{\dfrac{22}{2}} \:\:\:Or\:\:\:x=\cancel{\dfrac{14}{2}} }

\longrightarrow\bf{x=11\:\:\:Or\:\:\:x=7}

Thus;

x = 11 or x = 7 are two roots of the polynomial .

Similar questions