Solve the quadratic equation (y²-6y)²-4(y²-6y+3)-20=0
Answers
Answered by
19
(y^2 -6y)^2 - 4(y^2 -6y + 3) - 20 = 0
Let y^2 -6y = x ——> 1
x^2 - 4(x + 3) - 20 = 0
x^2 - 4x - 12 - 20 = 0
x^2 - 4x - 32 = 0
x^2 - 8x + 4x - 32 = 0
x(x - 8) + 4(x - 8) = 0
(x + 4)(x - 8) = 0
x + 4 = 0, x - 8 = 0
x = -4, x = 8
Substitute x = -4 in equation 1,
y^2 -6y = -4
y^2 -6y + 4 = 0
y = (-(-6) +/- sqrt(36 - 16))/2
y = (6 +/- sqrt(20))/2
y = (6 +/- 2*sqrt(5))/2
y = 3 +/- sqrt(5)
y = 3 + sqrt(5), 3 - sqrt(5)
Substitute x = 8 in equation 1,
y^2 -6y = 8
y^2 -6y - 8 = 0
y = (-(-6) +/- sqrt(64 + 32))/2
y = (-(-6) +/- sqrt(96))/2
y = (-(-6) +/- 4*sqrt(6))/2
y = 3 +/- 2*sqrt(6)
y = 3 + 2*sqrt(6), 3 - 2*sqrt(6)
Therefore
y = 3 + sqrt(5), 3 - sqrt(5), 3 + 2*sqrt(6), 3 - 2*sqrt(6) ——> Answer
Let y^2 -6y = x ——> 1
x^2 - 4(x + 3) - 20 = 0
x^2 - 4x - 12 - 20 = 0
x^2 - 4x - 32 = 0
x^2 - 8x + 4x - 32 = 0
x(x - 8) + 4(x - 8) = 0
(x + 4)(x - 8) = 0
x + 4 = 0, x - 8 = 0
x = -4, x = 8
Substitute x = -4 in equation 1,
y^2 -6y = -4
y^2 -6y + 4 = 0
y = (-(-6) +/- sqrt(36 - 16))/2
y = (6 +/- sqrt(20))/2
y = (6 +/- 2*sqrt(5))/2
y = 3 +/- sqrt(5)
y = 3 + sqrt(5), 3 - sqrt(5)
Substitute x = 8 in equation 1,
y^2 -6y = 8
y^2 -6y - 8 = 0
y = (-(-6) +/- sqrt(64 + 32))/2
y = (-(-6) +/- sqrt(96))/2
y = (-(-6) +/- 4*sqrt(6))/2
y = 3 +/- 2*sqrt(6)
y = 3 + 2*sqrt(6), 3 - 2*sqrt(6)
Therefore
y = 3 + sqrt(5), 3 - sqrt(5), 3 + 2*sqrt(6), 3 - 2*sqrt(6) ——> Answer
Answered by
8
On solving, y = 3 ± √5, y = 7, and y = - 1.
Given,
A quadratic equation, (y² - 6y)² - 4 (y² - 6y + 3) - 20 = 0
To Find,
The solution of the given quadratic equation.
Solution,
We have, (y² - 6y)² - 4 (y² - 6y + 3) - 20 = 0
Let (y² - 6y) be x.
⇒ x² - 4(x + 3) - 20 = 0
⇒ x² - 4x -12 -20 = 0
⇒ x² - 4x - 32 = 0
⇒ x² - 8x + 4x - 32 = 0
⇒ x(x - 8) + 4(x - 8) = 0
⇒ (x + 4)(x - 8) = 0
⇒ x = - 4 and x = 8
Now, substituting the values which are let,
⇒ (y² - 6y) = x
For x = - 4,
⇒ y² - 6y + 4 = 0
⇒ y = [6 ± √(36 - 16)]/2
⇒ y = [6 ± 2√5]/2
⇒ y = 3 ± √5
For x = 8,
⇒ y² - 6y - 8 = 0
⇒ y = [6 ± √(36 + 32)]/2
⇒ y = [6 ± 8]/2
⇒ y = 7 and y = - 1
Therefore, on solving, y = 3 ± √5, y = 7, and y = - 1.
#SPJ3
Similar questions