Math, asked by shreya1356, 3 months ago

Solve the quadratic equations by Factorization method :
 \sf{x^{2} + 2 \sqrt{2x} - 6 = 0 }

Answers

Answered by Anonymous
807

\sf  \underline{\red{ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: Aɴsᴡᴇʀ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}

 \scriptsize \sf{ We  \: have  \: , \: \: \: \: \: \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    } \\  \scriptsize \sf{x ^{2} + 2 \sqrt{2x} - 6 = 0  } \\  \scriptsize \sf{ \implies \: x^{2} + 3 \sqrt{2}   x -  \sqrt{2x} - 6 = 0 }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \scriptsize \sf{ \implies \: x(x + 3 \sqrt{2}) -  \sqrt{2}(x + 3 \sqrt{2}) = 0   } \\  \scriptsize \sf{ \implies \: (x + 3 \sqrt{2})(x -  \sqrt{2}) = 0 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\  \scriptsize \sf{ \implies \: x + 3 \sqrt{2} = 0 \: or , \: x -  \sqrt{2} = 0 } \:  \:  \:  \:  \:   \\  \scriptsize \sf{ \implies \: x =  - 3 \sqrt{2} \: or  \: , \: x =  \sqrt{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: } \scriptsize \sf{Thus , x = - 3 \sqrt{2} \: and \: x =  \sqrt{2} \: are \: two \: roots \: of \: the \: given \: equation . }

Answered by ravikantsinha740
2

Answer:

see the attachment above.

hope it helpss you..

Attachments:
Similar questions