Math, asked by NainaMehra, 1 year ago

Solve the ques 6. ( i ) and ( ii ) in the above attachment

Attachments:

Answers

Answered by Anonymous
27

\underline{\underline{\large{\mathfrak{Solution : }}}} \\ \\<br /> \\ <br />\underline{\textsf{Question no. 6(i) : }}


 \underline{\textsf{Given : }} \\ \\<br /><br />\mathsf{\implies S_{n} \: = \: \Bigg( \dfrac{5n^{2}}{2} \: + \: \dfrac{3n}{2} \Bigg)}  \\  \\  \underline{\textsf{To Find : }} \\ \\<br /><br />\mathsf{\implies T_{n} \: = \: ? } \\ \\<br /><br />\mathsf{\implies T_{20} \: = \: ?}




\textsf{We know that : } \\ \\<br /><br />\mathsf{\implies T_{n} \: = \: S_{n} \: - \: S_{(n \: - \: 1)}}<br /><br />



\mathsf{\implies T_{n} \: = \: \Bigg( \dfrac{5n^{2}}{2} \: + \: \dfrac{3n}{2} \Bigg) \: - \: \Bigg\{ \dfrac{5 {(n \:  -  \: 1)}^{2} }{2}\: + \: \dfrac{3(n \:  -  \: 1)}{2} \Bigg\}}





\mathsf{\implies T_{n} \: = \: \Bigg( \dfrac{5n^{2} \: + \: 3n}{2} \Bigg) \: - \: (n \: - \: 1)\Bigg\{ \dfrac{5(n \: - \: 1)}{2} \: + \: \dfrac{3}{2} \Bigg\}}




\mathsf{\implies T_{n} \: = \: \Bigg( \dfrac{5n^{2} \: + \: 3n}{2} \Bigg) \: - \: (n \: - \: 1) \Bigg\{ \dfrac{5(n \: - \: 1) \: + \: 3}{2} \Bigg\} }



\mathsf{\implies T_{n} \: = \: \Bigg( \dfrac{5n^{2} \: + \: 3n}{2} \Bigg) \: - \: (n \: - \: 1) \Bigg(\dfrac{5n \: - \: 5\: + \: 3}{2} \Bigg) }



\mathsf{\implies T_{n} \: = \: \Bigg( \dfrac{5n^{2} \: + \: 3n}{2} \Bigg) \: - \: (n \: - \: 1) \Bigg(\dfrac{5n \: - \: 2}{2} \Bigg)}




\mathsf{\implies T_{n} \: = \: \Bigg\{ \dfrac{(5n^{2} \: + \: 3n) \:  -  \: (n \:  -  \: 1)(5n \:  -  \: 2)}{2}\Bigg\}}



\mathsf{\implies T_{n} \: = \: \Bigg\{ \dfrac{(5n^{2} \: + \: 3n) \:  -  \: (5 {n}^{2} \:  -  \: 2n \:  -  \: 5n \:  +  \: 2 )}{2}\Bigg\}}



\mathsf{\implies T_{n} \: = \: \Bigg\{ \dfrac{ \cancel{5n^{2}} \: + \: 3n \:  -  \:  \cancel{5 {n}^{2}} \:   +   \: 2n \:   +   \: 5n \:   - \: 2 }{2}\Bigg\}}



\mathsf{\implies T_{n} \: = \: \Bigg\{ \dfrac{ 10n \: - \: 2}{2} \Bigg\}} \\ \\ \\ <br /><br />\mathsf{\implies T_{n} \: = \: \Bigg\{ \dfrac{ \cancel{2}(5n \: - \: 1)}{\cancel{2}} \Bigg\}}  \\  \\  \\ \mathsf{\therefore \quad \: T_{n} \: = \: 5n \: - \: 1}



\underline{\mathsf{To \: Find \longrightarrow 20th \: term : }} \\ \\<br /><br />\mathsf{\implies T_{n} \: = \: 5n \: - \: 1} \\ \\<br /><br />\mathsf{\implies T_{20} \: = \: 5 \: \times \: 20 \: - \: 1} \\ \\<br /><br />\mathsf{\implies T_{20} \: = \: 100 \: - \: 1} \\ \\<br /><br />\mathsf{\therefore \quad \: T_{20} \: = \: 99}





\underline{\textsf{Question no. 6(ii) : }}




 \underline{\textsf{Given : }} \\ \\<br /><br />\mathsf{\implies S_{n} \: = \: \Bigg( \dfrac{3n^{2}}{2} \: + \: \dfrac{5n}{2} \Bigg)}  \\  \\  \underline{\textsf{To Find : }} \\ \\<br /><br />\mathsf{\implies T_{n} \: = \: ? } \\ \\<br /><br />\mathsf{\implies T_{25} \: = \: ?}




\textsf{We know that : } \\ \\<br /><br />\mathsf{\implies T_{n} \: = \: S_{n} \: - \: S_{(n \: - \: 1)}}<br /><br />




\mathsf{\implies T_{n} \: = \: \Bigg( \dfrac{3n^{2}}{2} \: + \: \dfrac{5n}{2} \Bigg) \: - \: \Bigg\{ \dfrac{3 {(n \:  -  \: 1)}^{2} }{2}\: + \: \dfrac{5(n \:  -  \: 1)}{2} \Bigg\}}




\mathsf{\implies T_{n} \: = \: \Bigg( \dfrac{3n^{2} \: + \: 5n}{2} \Bigg) \: - \: (n \: - \: 1)\Bigg\{ \dfrac{3(n \: - \: 1)}{2} \: + \: \dfrac{5}{2} \Bigg\}}



\mathsf{\implies T_{n} \: = \: \Bigg( \dfrac{3n^{2} \: + \: 5n}{2} \Bigg) \: - \: (n \: - \: 1) \Bigg\{ \dfrac{3(n \: - \: 1) \: + \: 5}{2} \Bigg\} }



\mathsf{\implies T_{n} \: = \: \Bigg( \dfrac{3n^{2} \: + \: 5n}{2} \Bigg) \: - \: (n \: - \: 1) \Bigg(\dfrac{3n \: - \: 3\: + \: 5}{2} \Bigg) }



\mathsf{\implies T_{n} \: = \: \Bigg( \dfrac{3n^{2} \: + \: 5n}{2} \Bigg) \: - \: (n \: - \: 1) \Bigg(\dfrac{3n \:  + \: 2}{2} \Bigg)}



\mathsf{\implies T_{n} \: = \: \Bigg\{ \dfrac{(3n^{2} \: + \: 5n) \:  -  \: (n \:  -  \: 1)(3n \:   +   \: 2)}{2}\Bigg\}}



\mathsf{\implies T_{n} \: = \: \Bigg\{ \dfrac{(3n^{2} \: + \: 5n) \:  -  \: (3 {n}^{2} \:   +  \: 2n \:  -  \: 3n \:   -   \: 2 )}{2}\Bigg\}}



\mathsf{\implies T_{n} \: = \: \Bigg\{ \dfrac{ \cancel{3n^{2}} \: + \: 5n \:  -  \:  \cancel{3 {n}^{2}} \:    -    \: 2n \:   +   \: 3n \:    +  \: 2 }{2}\Bigg\}}



\mathsf{\implies T_{n} \: = \: \Bigg\{ \dfrac{ 6n \:  +  \: 2}{2} \Bigg\}} \\ \\ \\ <br /><br />\mathsf{\implies T_{n} \: = \: \Bigg\{ \dfrac{ \cancel{2}(3n \:  +  \: 1)}{\cancel{2}} \Bigg\}}  \\  \\  \\ \mathsf{\therefore \quad \: T_{n} \: = \:  3n \:  + \: 1}



\underline{\mathsf{To \: Find \longrightarrow 25th \: term : }} \\ \\<br /><br />\mathsf{\implies T_{n} \: = \: 3n \:  + \: 1} \\ \\<br /><br />\mathsf{\implies T_{25} \: = \: 3 \: \times \: 25 \:  +  \: 1} \\ \\<br /><br />\mathsf{\implies T_{25} \: = \: 75\:  + \: 1} \\ \\<br /><br />\mathsf{\therefore \quad \: T_{25} \: = \: 76}

Inflameroftheancient: You're a literal expert when it comes to sequences
Inflameroftheancient: Excellent answer bro!
Anonymous: Thanks !
Mylo2145: My question is, How much time did it take? I mean, it's such a long one! Must have taken many complex Latex codes. Hats off sir! Nailed it!
Anonymous: Thanks dii !
Anonymous: It takes approx 1 hour to answer.
Anonymous: Check your inbox !
Answered by Anonymous
9
Hey there !!


↪ In question no. (6) → [i] .

➡ Given :-

→ S \tiny n =  \frac{5 {n}^{2} }{2}  +  \frac{3n}{2}


➡ To find :-

→ nth term [ a \tiny n ] .

→ 20th term [ a \tiny 20 ] .


➡ Solution :-


▶See the attachment 1 and 2.



↪ In question no. (6) → [ii] .

➡ Given :-

→ S \tiny n =  \frac{3 {n}^{2} }{2}  +  \frac{5n}{2} .

➡ To find :-

→ nth term [ a \tiny n ] .

→ 25th term [ a \tiny 25 ] .


➡ Solution :-

▶ See the attachment 2 and 3.


✔✔ Hence, it is solved ✅✅.

____________________________________


THANKS

#BeBrainly.

Attachments:

Mylo2145: Gud one dude!
Similar questions