Math, asked by patelpuravkumar, 7 months ago

solve the question.​

Attachments:

Answers

Answered by Flaunt
59

\huge\tt{\bold{\underline{\underline{Question᎓}}}}

To Rationalise:

\huge\bold{ \frac{4}{ \sqrt{3}  +  \sqrt{2} }}

\huge\tt{\bold{\underline{\underline{Answer᎓}}}}

╔════════════════════════╗

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _✍️

 \bold{=  >  \frac{4}{ \sqrt{3}  +  \sqrt{2} } }

=>To Rationalise we multiply both numerator and denominator with opposite sign of denominator.

=>If denominator is positive value then multiply with negative sign to both numerator and denominator and vice versa

 \bold{=  >  \frac{4}{ \sqrt{3} +  \sqrt{2}  }  \times  \frac{ \sqrt{3}  -  \sqrt{2} }{ \sqrt{3} -  \sqrt{2}  }}

 \bold{=  >  \frac{4( \sqrt{3}  -  \sqrt{2} )}{ {( \sqrt{3} )}^{2}  -  {( \sqrt{2}) }^{2} }}

\mathcal{Here,this\: identity \:is \:used:-}

\bold{\boxed{ =  >  {x}^{2}  -  {y}^{2}  = (x + y)(x - y)}}

 =  >  \frac{4( \sqrt{3} -  \sqrt{2} ) }{3 - 2}

 \bold{\red{=  > 4( \sqrt{3}  -  \sqrt{2} )}}

╚════════════════════════╝

нσρє ıт нєłρs yσυ

_____________________

тнαηkyσυ

Similar questions