Math, asked by saratmishra340, 2 months ago

solve the question...​

Attachments:

Answers

Answered by Anonymous
41

Given to find the value of :-

(6 {}^{ - 1}  + 8 {}^{ - 1} ) \times  \bigg( \dfrac{5}{2}  \bigg) {}^{ - 1}

Solution:-

As we know from the exponent laws

 \red {a {}^{ - n}  =  \dfrac{1}{a {}^{n} }}

 \red{ \bigg( \dfrac{a}{b}  \bigg) {}^{ - n}  =  \bigg( \dfrac{b}{a}  \bigg) {}^{n} }

So, by using this we can simplify the question

  \bigg( \dfrac{1}{6}  +  \dfrac{1}{8}  \bigg) \times  \bigg( \dfrac{2}{5}  \bigg) {}^{1}

Simplifying this

L.C.M of 6, 8 is 24

  \bigg( \dfrac{1(4) + 1(3)}{24}   \bigg) \times  \bigg( \dfrac{2}{5}  \bigg)

  \bigg( \dfrac{4 + 3}{24}   \bigg) \times  \bigg( \dfrac{2}{5}  \bigg)

  \bigg( \dfrac{7}{24}   \bigg) \times  \bigg( \dfrac{2}{5}  \bigg)

\bigg( \dfrac{7}{ \not \not{{24}} }   \bigg) \times  \bigg( \dfrac{ \not2 \: }{5}  \bigg)

 \bigg( \dfrac{7}{12}  \bigg) \times  \bigg( \dfrac{1}{5}   \bigg)

 \bigg( \dfrac{7 \times 1}{12 \times 5}  \bigg)

 \bigg( \dfrac{7 }{60}  \bigg)

So,

 \red{(6 {}^{ - 1}  + 8 {}^{ - 1} ) \times  \bigg( \dfrac{5}{2}  \bigg) {}^{ - 1}  =  \bigg( \dfrac{7}{60}  \bigg)}

Note :-

Dear user this is the correct answer according to me kindly check the options.

Know more exponent and laws:-

{a^m \times a^n = a^{m+n}}

\dfrac{a^m}{a^n}= a^{m-n}

{a^0 =1}

{1^a = 1}

If the bases are equal then powers also should be equal .

{(a^m)^n = a^{mn}}

Answered by EmperorSoul
0

Given to find the value of :-

(6 {}^{ - 1}  + 8 {}^{ - 1} ) \times  \bigg( \dfrac{5}{2}  \bigg) {}^{ - 1}

Solution:-

As we know from the exponent laws

 \red {a {}^{ - n}  =  \dfrac{1}{a {}^{n} }}

 \red{ \bigg( \dfrac{a}{b}  \bigg) {}^{ - n}  =  \bigg( \dfrac{b}{a}  \bigg) {}^{n} }

So, by using this we can simplify the question

  \bigg( \dfrac{1}{6}  +  \dfrac{1}{8}  \bigg) \times  \bigg( \dfrac{2}{5}  \bigg) {}^{1}

Simplifying this

L.C.M of 6, 8 is 24

  \bigg( \dfrac{1(4) + 1(3)}{24}   \bigg) \times  \bigg( \dfrac{2}{5}  \bigg)

  \bigg( \dfrac{4 + 3}{24}   \bigg) \times  \bigg( \dfrac{2}{5}  \bigg)

  \bigg( \dfrac{7}{24}   \bigg) \times  \bigg( \dfrac{2}{5}  \bigg)

\bigg( \dfrac{7}{ \not \not{{24}} }   \bigg) \times  \bigg( \dfrac{ \not2 \: }{5}  \bigg)

 \bigg( \dfrac{7}{12}  \bigg) \times  \bigg( \dfrac{1}{5}   \bigg)

 \bigg( \dfrac{7 \times 1}{12 \times 5}  \bigg)

 \bigg( \dfrac{7 }{60}  \bigg)

So,

 \red{(6 {}^{ - 1}  + 8 {}^{ - 1} ) \times  \bigg( \dfrac{5}{2}  \bigg) {}^{ - 1}  =  \bigg( \dfrac{7}{60}  \bigg)}

Note :-

Dear user this is the correct answer according to me kindly check the options.

Know more exponent and laws:-

{a^m \times a^n = a^{m+n}}

\dfrac{a^m}{a^n}= a^{m-n}

{a^0 =1}

{1^a = 1}

If the bases are equal then powers also should be equal .

{(a^m)^n = a^{mn}}

Similar questions