Math, asked by ItzMahira, 1 month ago

solve the question!!!​

Attachments:

Answers

Answered by yourstube251201
1

Answer:

f(x)=x2+2   xϵR

x2≥0

x2+2≥2

∴ Range of f(x)=(2,∞)

Answered by mathdude500
7

Given Question :-

Find the range of real function from Real to Real

\rm :\longmapsto\:f = \bigg(x, \: \dfrac{ {x}^{2} }{ {x}^{2}  + 1}  \bigg)  : x \:  \in \: R

 \green{\large\underline{\sf{Solution-}}}

Given function is

\rm :\longmapsto\:f = \bigg(x, \: \dfrac{ {x}^{2} }{ {x}^{2}  + 1}  \bigg)  : x \:  \in \: R

To find the range of the function f, Let assume that

\rm :\longmapsto\:y = \dfrac{ {x}^{2} }{ {x}^{2}  + 1}

\rm :\longmapsto\: {yx}^{2} + y =  {x}^{2}

\rm :\longmapsto\: {yx}^{2} - {x}^{2}  =  - y

\rm :\longmapsto\: - {x}^{2} (1 - y) =  - y

\rm :\longmapsto\:  {x}^{2} (1 - y) =  y

\rm :\longmapsto\: {x}^{2}  = \dfrac{y}{1 - y}

\rm\implies \:x =  \sqrt{\dfrac{y}{1 - y} }

For x to be defined,

\rm :\longmapsto\:y \geqslant 0 \:  \: and \:  \: 1 - y > 0

\rm :\longmapsto\:y \geqslant 0 \:  \: and \:  \:  - y >  - 1

\rm :\longmapsto\:y \geqslant 0 \:  \: and \:  \:   y  < 1

\bf\implies \:y \:  \in \: [0, \: 1)

Hence,

\bf\implies \:Range \: of \: f \:  \in \: [0, \: 1)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to know

\boxed{\tt{  |x|  < y \:  \: \rm\implies \: - y < x < y \: }}

\boxed{\tt{  |x|  \leqslant  y \:  \: \rm\implies \: - y  \leqslant  x  \leqslant  y \: }}

\boxed{\tt{  |x - z|  \leqslant  y \:  \: \rm\implies \: z- y  \leqslant  x  \leqslant  z + y \: }}

\boxed{\tt{  |x|  > y \:  \: \rm\implies \:x <  - y \:  \: or \:  \: x > y \: }}

\boxed{\tt{  |x|  \geqslant  y \:  \: \rm\implies \:x  \leqslant   - y \:  \: or \:  \: x  \geqslant  y \: }}

\boxed{\tt{  |x - z|  \geqslant  y \:  \: \rm\implies \:x  \leqslant   z- y \:  \: or \:  \: x  \geqslant  z + y \: }}

Similar questions