solve the question..
Attachments:
Answers
Answered by
21
Hii !!
( a ) ( sin²A Cos²B - Cos²A Sin²B ) = ( sin²A - Sin²B ).
We have :-
LHS = ( sin²A Cos²B - Cos²A Sin²B ).
=> Sin²A ( 1 - Sin²B ) - ( 1 - Sin²A ) Sin²B).
=> ( Sin²A - Sin²B) = RHS.
( b ) LHS = ( Tan²A Sec²B - Sec²A Tan²B ).
=> Tan²A ( 1 + Tan²B ) - ( 1 + Tan²A ) Tan²B.
=> ( Tan²A - Tan²B ) = RHS.
( a ) ( sin²A Cos²B - Cos²A Sin²B ) = ( sin²A - Sin²B ).
We have :-
LHS = ( sin²A Cos²B - Cos²A Sin²B ).
=> Sin²A ( 1 - Sin²B ) - ( 1 - Sin²A ) Sin²B).
=> ( Sin²A - Sin²B) = RHS.
( b ) LHS = ( Tan²A Sec²B - Sec²A Tan²B ).
=> Tan²A ( 1 + Tan²B ) - ( 1 + Tan²A ) Tan²B.
=> ( Tan²A - Tan²B ) = RHS.
Answered by
1
Hi!!!!!
Refer to the attachment
Refer to the attachment
Attachments:
Similar questions