Solve the question fast
Attachments:
Answers
Answered by
1
Given 2(sin^6x + cos^6x) - 3(sin^4x + cos^4x)
2[(sin^2x)^3 + c(cos^2x)^3) - 3[(sin^2x)^2 + (cos^2x)^2]
We know that a^3 + b^3 = (a + b)^3 - 3ab(a + b), a^2 + b^2 = (a + b)^2 - 2ab
2[(sin^2 x + cos^2x)^3 - 3(sin^2x)(cos^2x)(sin^2 x + cos^2x))] - 3[(sin^2x + cos^2x)^2 - 2(sin^2x)(cos^2x))]
2(1)^3 - 3(sin^2x)(cos^2x)(1) - 3(1)^2 + 6(sin^2x)(cos^2x)
2 - 6sin^2xcos^2x - 3 + 6sin^2xcos^2x
2 - 3
= - 1.
Hope this helps!
2[(sin^2x)^3 + c(cos^2x)^3) - 3[(sin^2x)^2 + (cos^2x)^2]
We know that a^3 + b^3 = (a + b)^3 - 3ab(a + b), a^2 + b^2 = (a + b)^2 - 2ab
2[(sin^2 x + cos^2x)^3 - 3(sin^2x)(cos^2x)(sin^2 x + cos^2x))] - 3[(sin^2x + cos^2x)^2 - 2(sin^2x)(cos^2x))]
2(1)^3 - 3(sin^2x)(cos^2x)(1) - 3(1)^2 + 6(sin^2x)(cos^2x)
2 - 6sin^2xcos^2x - 3 + 6sin^2xcos^2x
2 - 3
= - 1.
Hope this helps!
siddhartharao77:
:-)
Answered by
0
Hi,
Please see the attached file!
Thanks
Please see the attached file!
Thanks
Attachments:
Similar questions