Math, asked by jaiiShankar, 4 months ago

Solve the question fast ​

Attachments:

Answers

Answered by kisha0798
1

Answer:

Given, Diameter =4 m

Radius =2 m h=21 m

V=πr

2

h=π(2)(2)(21)=84π

Volume of soil dug from well = volume of earth used to form embankment

⇒84π=π(5

2

−2

2

)h

h=

25−4

84

=

21

84

=4m

Answered by IamJaat
99

\bf Given\begin{cases} & \sf{Diameter \; of\; well \; = \bf{4 \;m}} \\ & \sf{Radius \;of\; well \; = \bf{2 \;m}}  \\ & \sf { Depth \; of\; earth \; (d) = \bf {21 \; m}} \\ & \sf {Width \; of \; embankment \; = \bf {3 \; m}}\end{cases}\\ \\

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

 \bf { To \; find \; : }

  • Height of embankment

ㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤㅤ

 \bf {Solution \; :}

 \sf { Volume \; of \;  earth \;  digged \; (v) = \;  \pi r^2 d }

 \implies \sf { v = \dfrac {22}{7} \times (2)^2 \times 21 }

 \implies \sf {v = 264 \;  m^3 }

Now,

 \sf {Outer \: radius \: of \: embankment \: = 3 + 2 = 5 \: m}

  • Let the height of embankment = h

 \boxed {\small {\frak {\underline {\red {Volume \; of \; embankment \; = \pi (R^2 - r^2)h }}}}}

 \small {\frak {\underline {\blue { Substituting \; the \; values :}}}}

 \implies \sf { \dfrac {22}{7} \times (25 - 4) \times h = 264 }

 \implies \sf { h = \dfrac { 264 \times 7}{22 \times 21}}

\implies \sf { h = 4 \; m}

 \boxed {\small {\underline {\frak {\green {Therefore, \; height \; of \; embankment \; = 3 \; m}}}}}

Similar questions