Math, asked by Anonymous, 8 days ago

Solve the question. Find the roots of given equation. It's hard for me :(​

Attachments:

Answers

Answered by user0888
17

\Huge\text{(a) -2}

\huge\text{\underline{\underline{Explanation}}}

\boxed{\text{Step 1.}}

The first thing to do in these equations is to simplify. Via exponential laws, we can simplify.

\cdots\longrightarrow 9^{x+2}-6\cdot3^{x+1}+1=0

\text{$\cdots\longrightarrow 9^{2}\cdot9^{x}-6\cdot3\cdot3^{x}+1=0\,\,\,\,\,\dots\boxed{a^{m}\times a^{n}=a^{m+n}}$}

\cdots\longrightarrow 81\cdot9^{x}-18\cdot3^{x}+1=0

So, we get-

\cdots\longrightarrow 81\cdot3^{2x}-18\cdot3^{x}+1=0

\boxed{\text{Step 2.}}

Now let's apply substitution to solve a quadratic equation. (t=3^{x})

\cdots\longrightarrow 81t^2-18t+1=0

\cdots\longrightarrow (9t-1)^{2}=0

\cdots\longrightarrow t=\dfrac{1}{9}\text{ (Double solution)}

\boxed{\text{Step 3.}}

Now, applying t=3^{x}-

\cdots\longrightarrow 3^{x}=3^{-2}\text{ (Double solution)}

\cdots\longrightarrow x=-2\text{ (Double solution)}

\huge\text{\underline{\underline{Final answer}}}

Hence, the equation has a double solution x=-2.

Option \boxed{\text{(a) }-2} is correct.

For further questions ask in my questions.

Answered by Anonymous
13

Answer:

Option [A] -2

Step-by-step explanation:

Equation we are provided to solve,

 \longrightarrow  \small\rm {9}^{x + 2}  - 6 \cdot {3}^{x + 1}  + 1 = 0

Using laws of exponent, we get:

\longrightarrow  \small\rm {9}^{x} \cdot {9}^{2}   - 6 \cdot {3}^{x} \cdot3  + 1 = 0

  \longrightarrow  \small\rm 81\cdot 3^{2x}   - 18\cdot {3}^{x}  + 1 = 0

\bf Let\, 3^x = y

 \longrightarrow \small \rm 81\cdot y^{2}   - 18\cdot y  + 1 = 0

This is quadratic equation in y. We can use quadratic formula to solve it.

By comparing this equation with general form of quadratic equation, we get:

  • a = 81
  • b = -18
  • c = 1

Therefore, roots of equation are:

 \longmapsto\small  \rm y =  \dfrac{  - {b} \pm  \sqrt{ {b}^{2}  - 4ac} }{2a}

{\longmapsto\small  \rm y =  \dfrac{  - ( - 18) \pm  \sqrt{ {( - 18)}^{2}  - 4(81)(1)} }{2(81)}}

{ \longmapsto\small  \rm y =  \dfrac{  18\pm  \sqrt{324 -324} }{162}}

{\longmapsto\small  \rm y =  \dfrac{  18 }{162}}

{\longmapsto\small  \rm y =  \dfrac{  1 }{9}}

Substitute back the value of 7.

{\small \leadsto  \rm  {3}^{x} =  \dfrac{  1 }{9}}

{\small \leadsto  \rm  {3}^{x} =  \dfrac{  1 }{ {3}^{2} }}

{\small \leadsto  \rm  {3}^{x} =  {3}^{ - 2} }

 \pink{ \boxed{\small \leadsto  \rm  x =  - 2 }}

This is the required answer. Option [A] is correct.

Additional Information:-

\boxed{\begin{array}{l }\:\underline{\text{Law of Exponents :}}\\\\\circ\:\:\sf\dfrac{a^m}{a^n} = a^{m - n}\\\\ \circ\:\:\sf{(a^m)^n = a^{mn}}\\\\\circ\:\:\sf(a^m)(a^n) = a^{m + n}\\\\\circ\:\:\sf\dfrac{1}{a^n} = a^{-n}\\\circ\:\:\sf\sqrt[\sf n]{\sf a} = (a)^{\dfrac{1}{n}}\end{array}}

Similar questions