Math, asked by Anonymous, 21 days ago

Solve the question given in attachment​

Attachments:

Answers

Answered by mathdude500
8

\large\underline{\sf{Solution-}}

Let assume that the n terms of geometric progression be

\red{\rm :\longmapsto\:a,ar, {ar}^{2}, -  -  -  -  -  - , {ar}^{n - 1}  } \:

Now, we have

\rm :\longmapsto\:S = a + ar +  {ar}^{2} +  {ar}^{3} +  -  -  -  +  {ar}^{n - 1}

We know, Sum of n terms of GP series having first term a and common ratio r respectively is

\boxed{ \tt{ \: S_n \:  =  \:  \frac{a( {r}^{n} - 1) }{r - 1} \: }}

So, using this identity, we get

\rm \implies\:\boxed{ \tt{ \: S =  \frac{a( {r}^{n}  - 1)}{r - 1} \: }} -  -  -  - (1)

Now, we have

\rm :\longmapsto\:R = \dfrac{1}{a}  + \dfrac{1}{ar}  + \dfrac{1}{ {ar}^{2} }  +  -  -  -  + \dfrac{1}{ {ar}^{n - 1} }

\rm :\longmapsto\:R = \dfrac{1}{a} \times \dfrac{1 -  {\bigg[\dfrac{1}{r} \bigg]}^{n} }{1 - \dfrac{1}{r} }

\rm :\longmapsto\:R = \dfrac{1}{a} \times \dfrac{1 -  \dfrac{1}{ {r}^{n} } }{ \dfrac{r - 1}{r} }

\rm :\longmapsto\:R = \dfrac{1}{a} \times \dfrac{\dfrac{ {r}^{n}  - 1}{ {r}^{n} } }{ \dfrac{r - 1}{r} }

\rm :\longmapsto\:R = \dfrac{1}{a}  \times \dfrac{ {r}^{n}  - 1}{ {r}^{n} }  \times \dfrac{r}{r - 1}

\rm :\longmapsto\:R = \dfrac{1}{a}  \times \dfrac{ {r}^{n}  - 1}{ {r}^{n - 1} }  \times \dfrac{1}{r - 1}

\rm \implies\:\boxed{ \tt{ \: R =  \dfrac{ {r}^{n}  - 1}{ a \: {r}^{n - 1} \: (r - 1) }  \: }}

Now, we have

\rm :\longmapsto\:P = a.ar. {ar}^{2}. {ar}^{3}... {ar}^{n - 1}

\rm :\longmapsto\:P =  {a}^{n}. {r}^{1 + 2 + 3 +  -  -  -  + (n - 1)}

\rm :\longmapsto\:P =  {a}^{n}.  {\bigg(r\bigg) }^{\dfrac{n - 1}{2} (1 + n - 1)}

\rm :\longmapsto\:P =  {a}^{n}.  {\bigg(r\bigg) }^{\dfrac{n(n - 1)}{2}}

\rm \implies\:\boxed{ \tt{ \:  {P}^{2} =  {a}^{2n}. {r}^{n(n - 1)} \: }} -  -  -  - (3)

Now, Consider,

\rm :\longmapsto\: {\bigg[\dfrac{S}{R} \bigg]}^{n}

\rm \:  =  \:  {\bigg[\dfrac{a( {r}^{n}  - 1)}{r - 1}  \times \dfrac{ {ar}^{n - 1}(r - 1) }{ {r}^{n} - 1 } \bigg]}^{n}

\rm \:  =  \:  {\bigg[ {a}^{2} {r}^{n - 1}  \bigg]}^{n}

\rm \:  =  \:  {a}^{2n}. {r}^{n(n - 1)}

\rm \:  =  \:  {P}^{2}

Thus,

\rm :\longmapsto\: \boxed{ \tt{ \: {\bigg[\dfrac{S}{R} \bigg]}^{n}  =  {P}^{2} \: }}

Hence, Proved

Similar questions