Math, asked by ansh2014chauhan, 10 months ago

Solve the question in attachment

Class 11th
Maths { HP , GP }

If right answer then brainiest
Spams are directly reported ​

Attachments:

Answers

Answered by vindyavahininamala
3

Step-by-step explanation:

explanation attached.

hope it is helpful to you.

thank you.

Attachments:
Answered by Anonymous
56

Question :

If  \sf x = a +  \frac{a}{r}  +  \frac{a}{r {}^{2} }  + ... \infty , \sf y = b -  \frac{b}{r} +  \frac{b}{r {}^{2} }  + ... \infty and  \sf c = c +  \frac{c}{r {}^{2} }  +  \frac{c}{r {}^{4} }  + ... \infty

Prove that  \sf \dfrac{xy}{z}  =  \dfrac{ab}{c}

Formula used:

1) Sum of n terms of a GP

The sum of first n terms of an GP is given by

\sf\:S_{n}=a(\dfrac{1-r{}^{n}}{1-r}),when r<1

or \sf\:S_{n}=a(\dfrac{r{}^{n}-1}{r-1}),when r>1

2) For infinite GP series

\sf\:S_{n}=(\dfrac{a}{1-r})

Solution :

 \sf x = a +  \frac{a}{r} +  \frac{a}{r { }^{2} }  + ... \infty

Here first term =a

common ratio = \sf\:=\dfrac{1}{r}

Therefore

 \sf x =  s _{n} =  \dfrac{a}{1 -  \frac{1}{r} }  =  \dfrac{ar}{r - 1} ..(1)

 \sf y =  1 - \frac{b}{r} +  \frac{b}{r {}^{2} }  + .... \infty

Here first term =b

common ratio = \sf\:=\dfrac{-1}{r}

Therefore,

 \sf \: y =  s _{n} =  \dfrac{b}{1 - ( \frac{ - 1}{r} )}

 \sf =  \dfrac{br}{r + 1} ...(2)

 \sf z = c +  \frac{c}{r {}^{2} }  +  \frac{c}{r {}^{4} }  + ... \infty

Here ,first term = c

Common ratio =\sf\:=\dfrac{1}{r{}^{2}}

 \sf z = s_{n} =  \dfrac{c}{1 -  \frac{1}{r {}^{2} } }

 =  \sf \dfrac{cr {}^{2} }{r {}^{2}  - 1} ...(3)

________________________

Now LHS

 =  \sf \dfrac{xy}{z}

put the values of (1),(2)&(3)

 \sf =  \dfrac{ \frac{ar}{r - 1} \times  \frac{br}{r + 1}  }{ \frac{cr}{r {}^{2} - 1 } }

 \sf =  \dfrac{ar}{r - 1}  \times  \dfrac{br}{r + 1}  \times  \dfrac{r {}^{2} - 1 }{cr {}^{2} }

 \sf =  \dfrac{ab \times  \cancel{r {}^{2} }}{ \cancel{r {}^{2} - 1} }  \times  \dfrac{ \cancel{r {}^{2}  - 1}}{c \times  \cancel{r {}^{2}} }

 \sf =  \dfrac{ab}{c}

= RHS

⇒LHS = RHS

Hence proved !

Similar questions