Math, asked by Anonymous, 9 months ago

Solve the question in attachment.

Options are ;
(a) 1/6
(b) 1/3
(c) 1/2
(d) 2/3 ​

Attachments:

Answers

Answered by BrainlyTornado
13

QUESTION:

\displaystyle Let\:A=\left[\begin{array}{c c c} \frac{1}{6}&  - \frac{1}{3}  & - \frac{1}{6} \\ \\ - \frac{1}{3}& \frac{2}{3}&\frac{1}{3}  \\  \\ - \frac{1}{6}& \frac{1}{3} & \frac{1}{6}\end{array} \right]\\ If \:  \:  {A}^{2016 \: l}  +{A}^{2017 \: m}  + {A}^{2018\: n} =  \frac{1}{ \alpha }A\\ for \:  \: every \: l, \: m, \: n \:  \in \: N \: ,then \:  \: find \: \:  the \\  value \:  \: of \:  \:  \alpha

ANSWER:

\textsf{\bf{The value of $\alpha$ = $\frac{1}{3}$}}

GIVEN:

{A}^{2016 \: l}  +{A}^{2017 \: m}  + {A}^{2018\: n} =  \frac{1}{ \alpha }A\\ for \:  \: every \: l, \: m, \: n \:  \in \: N

TO FIND:

 \textsf{The value of  $\alpha$}

EXPLANATION:

\displaystyle A =  \left[\begin{array}{c c c} \frac{1}{6}&  - \frac{1}{3}  & - \frac{1}{6} \\  \\  - \frac{1}{3}& \frac{2}{3}&\frac{1}{3}    \\  \\    - \frac{1}{6}& \frac{1}{3} & \frac{1}{6} \end{array}  \right] \\  \\ First \: \:  \:  find \:   \: {A}^{2}  \\  \\  {A}^{2}  =  \left[\begin{array}{c c c} \frac{1}{6}&  - \frac{1}{3}  & - \frac{1}{6} \\  \\  - \frac{1}{3}& \frac{2}{3}&\frac{1}{3}    \\  \\    - \frac{1}{6}& \frac{1}{3} & \frac{1}{6} \end{array}  \right] \left[\begin{array}{c c c} \frac{1}{6}&  - \frac{1}{3}  & - \frac{1}{6} \\  \\  - \frac{1}{3}& \frac{2}{3}&\frac{1}{3}    \\  \\    - \frac{1}{6}& \frac{1}{3} & \frac{1}{6} \end{array}  \right] \\  \\ Let \:  \:  {A}^{2} =  \left[\begin{array}{c c c} a_{11}& a_{12}& a_{13}\\  \\  a_{21} & a_{22} &a_{23} \\  \\ a_{31} & a_{32} &a_{33} \end{array} \right]

a_{11} = \frac{1}{6}  \times  \frac{1}{6}  +  \frac{ - 1}{3}  \times  \frac{ - 1}{3}  +  \frac{ - 1}{6}  \times  \frac{ - 1}{6}  \\  \\ a_{11} =  \frac{1}{36}  +  \frac{1}{9}  +  \frac{1}{36}  \\  \\ a_{11} =  \frac{1 + 4 + 1}{36}  \implies  \frac{6}{36}  =  \frac{1}{6}  \\  \\ a_{12} = \frac{ 1}{6}  \times  \frac{ - 1}{3} + \frac{ - 1}{3}  \times  \frac{2}{3} + \frac{ - 1}{6}  \times  \frac{ 1}{3} \\  \\ a_{12} =  \frac{ - 1}{18}   -  \frac{2}{9}  -  \frac{1}{18}  \\  \\ a_{12} =  \frac{ - 1 -  4- 1}{18}  \implies \frac{ - 6}{18}  = -   \frac{ 1}{3} \\  \\ a_{13} = \frac{1}{6}  \times  \frac{ - 1}{6} + \frac{ - 1}{3}  \times  \frac{1}{3} + \frac{ - 1}{6}  \times  \frac{1}{6} \\  \\ a_{13} =  \frac{ - 1}{36}  -  \frac{1}{9}  -  \frac{1}{36}  \\  \\ a_{13} =  \frac{ - 1 - 4 - 1}{36}  \implies \frac{ - 6}{36}  =  - \frac{1}{6}

 a_{21} = \frac{ - 1}{3}  \times  \frac{1}{6}  +  \frac{ 2}{3}  \times  \frac{ - 1}{3}  +  \frac{ 1}{3}  \times  \frac{ - 1}{6}  \\  \\a_{21} =  -  \frac{1}{18}  -  \frac{2}{9}  -  \frac{1}{18}  \\  \\ a_{21} =  \frac{ - 1 - 4 - 1}{18}  \implies -  \frac{6}{18}  =  -  \frac{1}{3}  \\  \\ a_{22} = \frac{ - 1}{3}  \times  \frac{  - 1}{3} + \frac{ 2}{3}  \times  \frac{2}{3} + \frac{ 1}{3}  \times  \frac{ 1}{3} \\  \\ a_{22} = \frac{1}{9}  +  \frac{4}{9}  +  \frac{1}{9}  \\  \\ a_{22}  \implies \frac{6}{9}    =  \frac{2}{3}  \\  \\ a_{23} = \frac{ - 1}{3}  \times  \frac{ - 1}{6} + \frac{ 2}{3}  \times  \frac{1}{3} + \frac{  1}{3}  \times  \frac{1}{6} \\  \\ a_{23}  =  \frac{1}{18}  +  \frac{2}{9}  +  \frac{1}{18}  \\  \\ a_{23}  =   \frac{1 + 4 + 1}{18} \implies \frac{6}{18}  =  \frac{1}{3}

 a_{31}  = \frac{ - 1}{6}  \times  \frac{1}{6}  +  \frac{ 1}{3}  \times  \frac{ - 1}{3}  +  \frac{ 1}{6}  \times  \frac{ - 1}{6}  \\  \\ a_{31} =  -  \frac{1}{36}  -  \frac{1}{9}  - \frac{1}{36}  \\  \\ a_{31} =  \frac{ - 1 - 4 - 1}{36}  \implies -  \frac{6}{36}  =  -  \frac{1}{6}  \\  \\ a_{32} =  \frac{ - 1}{6}  \times  \frac{  - 1}{3} + \frac{1}{3}  \times  \frac{2}{3} + \frac{ 1}{6}  \times  \frac{ 1}{3} \\  \\ a_{32} = \frac{1}{18} +  \frac{2}{9}  +  \frac{1}{18}  \\  \\  a_{33} = \frac{1 + 4 + 1}{18} \implies \frac{6}{18}  =  \frac{1}{3}  \\  \\ a_{33} = \frac{ - 1}{6}  \times  \frac{ - 1}{6} + \frac{ 1}{3}  \times  \frac{1}{3} + \frac{  1}{6}  \times  \frac{1}{6} \\  \\ a_{33} =  \frac{1}{36}  +  \frac{1}{9}  + \frac{1}{36}  \\  \\ a_{33} =  \frac{1 + 4 + 1}{36}  \implies \frac{6}{36}  =  \frac{1}{6}

 SUBSTITUTE \:  \: THE \:  \: VALUES \:  \: OF \\  a_{11}, \:  \: a_{12}, \:  \: a_{13}, \:  \: a_{21}, \:  \: a_{22}, \:  \: a_{23},  \\ a_{31}, \:  \: a_{32}, \:  \: a_{33} \:  \: in \:  \: A^{2}

A^{2}   =   \left[\begin{array}{c c c} \frac{1}{6}&  - \frac{1}{3}  & - \frac{1}{6} \\  \\  - \frac{1}{3}& \frac{2}{3}&\frac{1}{3}    \\  \\    - \frac{1}{6}& \frac{1}{3} & \frac{1}{6} \end{array}  \right] \\  \\ A^{2}  = A \\  \\  \textsf{Multiply by A on both sides} \\ A^{3}  = A^{2}

Hence multiplying A n times(A) also gives A

Also given l, m, n are natural numbers.

{A}^{2016 \: l}  +{A}^{2017 \: m}  + {A}^{2018\: n} =  \frac{1}{ \alpha }A \\  \\ {A}^{2016 \: l} = {A}^{2017 \: m} = {A}^{2018\: n} = A \\  \\ 3A =  \frac{1}{ \alpha}A \\  \\ \frac{1}{ \alpha} = 3 \\  \\ \alpha =  \frac{1}{3}

\textsf{\bf{Hence the value of $\alpha$ = $\frac{1}{3}$}}

Answered by EnchantedGirl
19

ANSWER :- 1/3

SOLUTION :- GIVEN IN THE ATTACHMENT

HOPE IT HELPS :)

Attachments:
Similar questions