Math, asked by 2020Sucks, 6 months ago

Solve the question in the above attachment ✔⬆​

Attachments:

Answers

Answered by gdhruv720
0

we have, Tan A=5/12=p/b

so, p=5 and b=12

so by Pythagoras theorem,

h²=p²+b²=>h=√(5²+12²)=>h=√(25+144)=>h=√(169)=>h=13

so now we know other trigonometric identities will be,

Sin A=p/h=5/13 ; Cos A=b/h=12/13 ; Cosec A=h/p=13/5

Sec A=h/b=13/12 ; Cot A=b/p=12/5

The above identities are the amswers

Answered by Anonymous
4

\huge\star{\underline{\mathtt{\red{A}\pink{n}\green{s}\blue{w}\purple{e}\orange{r}}}}

\large\sf\purple{All\:other\:trignometric\:ratios\:are:-}

\small\sf{sin\:A =  \frac{13}{12}}

\small\sf{cos\:A =  \frac{12}{13}}

\small\sf{cosec \: x =  \frac{13}{5}}

\small\sf{sec \: x =  \frac{13}{12}}

\small\sf{cot \: x =  \frac{12}{5}}

\large\sf\orange{It\:is\:given\:that}

\small\sf{tan \: A =  \frac{5}{12}} ........(1)

\small\sf{tan \: A =  \frac{perpendicular}{base}} ......(2)

\large\sf\pink{from\:(1)\:and\:(2)\:we\:get}

\small\sf{perpendicular=5x}

\small\sf{base=12x}

\small\sf{hypotenuse =  \sqrt{ {perpendicular}^{2}   + {base}^{2} }}

\small\sf{hypotenuse =  \sqrt{ {(5x)}^{2} +  {(12x)}^{2}  }}

\small\sf{hypotenuse =  \sqrt{ {169x}^{2}  = 13x}}

\small\sf{sin \: A =  \frac{perpendicular}{hypotenuse}  =  \frac{5x}{13x}  =  \frac{12}{13}}

\small\sf{cos \: A =  \frac{base}{hypotenuse}  =  \frac{12x}{13x}  =  \frac{12}{13}}

\small\sf{cosec \: x =  \frac{1}{sin \: a}  =  \frac{13}{5}}

\small\sf{sec \: x =  \frac{1}{cos \: a}  =  \frac{13}{12}}

\small\sf{cot \: x =  \frac{1}{tan \: a}  =  \frac{12}{5}}

\large\sf\green{Therefore,}

\large\sf\blue{All\:other\:trignometric\:ratios\:are:-}

\small\sf{sin\:A =  \frac{5}{13}}

\small\sf{cos\:A =  \frac{12}{13}}

\small\sf{cosec \: x =  \frac{13}{5}}

\small\sf{sec \: x =  \frac{13}{12}}

\small\sf{cot \: x =  \frac{12}{5}}

Similar questions