Math, asked by Anonymous, 1 month ago

Solve the question in the above attachment .

Want Step By Step Explanation ! ​

Attachments:

Answers

Answered by ramchauhan8461
0

0.5 air 0.6 ka ghaunrfal kaya ha

Answered by abhi569
4

Question:

integrate (5x + 2)/(3x^2 - 9x + 10) dx

Answer:

 \frac{5}{6}  \sf{ln|3x {}^{2}  - 9x + 10|} +  \frac{19 \sqrt{39} }{39}  tan {}^{ -1 }  (\frac{2 \sqrt{39} x-  3 \sqrt{39} }{13} ) + C

Step-by-step explanation:

\int  \frac{5x + 2}{3x {}^{2} - 9x + 10 }dx  \\  \\  \int \frac{ 5x  -  \frac{15}{2}   + \frac{15}{2}   + 2}{3( {x} ^{2} - 3x +  \frac{10}{3} ) }  dx\\  \\    \frac{1}{3}  \int  \frac{5 x -  \frac{15}{2} }{ {x}^{2}  - 3x +  \frac{10}{3} } dx+  \frac{1}{3}  \int \frac{  \frac{15}{2}  + 2}{ (x - \frac{3}{2}   {)}^{2} -  \frac{3 {}^{2} }{ {2}^{2}  }  + \frac{10}{3} } dx \\  \\    \frac{1}{3}  \int  \frac{ \frac{5}{2}  ({2x} - 3  )}{ {x}^{2}  - 3x +  \frac{10}{3} } dx+  \frac{1}{3}  \int \frac{\frac{19}{2}}{ (x - \frac{3}{2}   {)}^{2} + \frac{13}{12} } dx  \\  \\  \frac{5}{6}  \int \frac{f'(x)}{f(x)}dx  +  \frac{19}{6}  \int \frac{1}{(x -  \frac{3}{2}   {)}^{2}  + ( \frac{ \sqrt{13} }{ \sqrt{12} }  ) {}^{2} } dx \\  \\  \frac{5}{6}  \sf{ln}|x{}^{2}  - 3x + \frac{10}{3}  | + C" +   \frac{19}{6}( \frac{ \sqrt{12} }{ \sqrt{13} })  tan {}^{ - 1}  \frac{x -  \frac{3}{2} }{ \frac{ \sqrt{13} }{ \sqrt{12} } }  + C' \\  \\  \frac{5}{6}  \sf{ln|3x {}^{2}  - 9x + 10| - ln|3|}  + C" + \frac{19 \sqrt{39} }{39}  tan {}^{ -1 }  (\frac{2 \sqrt{39} x-  3 \sqrt{39} }{13} )+ C'\\\\\frac{5}{6}  \sf{ln|3x {}^{2}-9x + 10|} +\frac{19 \sqrt{39} }{39}  tan {}^{ -1 }  (\frac{2 \sqrt{39} x-3 \sqrt{39} }{13} ) + C

Similar questions