Math, asked by Anonymous, 17 hours ago

Solve the question in the attachment!!​

Attachments:

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Let assume that,

\rm :\longmapsto\:A \:  =  \:\{x\} \:

and

\rm :\longmapsto\:B \:  =  \:\{y\} \:

\rm\implies \:A \: \cap  \: B = \phi

and

\rm :\longmapsto\:A\cup B = \{x, \: y\}

We know,

Power set of a set A is defined as set of subsets of A.

So,

\rm :\longmapsto\:P(A) = \{ \phi ,\: x\}

and

\rm :\longmapsto\:P(B) = \{ \phi ,\: y\}

and

\rm\implies \:P(A \: \cap  \: B) =\{ \phi \}

and

\rm :\longmapsto\:P(A\cup B) = \{\phi ,x,y,xy\}

Now, Consider

\rm :\longmapsto\:P(A)\cup P(B) = \{\phi ,x,y\}

and

\rm :\longmapsto\:P(A\cup B) = \{\phi ,x,y,xy\}

\rm\implies \:\boxed{\tt{  \: P(A)\cup P(B) \:  \ne \: P(A\cup B) \: }} \\

Now, Consider

\rm :\longmapsto\:P(A\cap B) = \{\phi \}

and

\rm :\longmapsto\:P(A) \: \cap \: P( B) = \{\phi \}

\rm\implies \:\boxed{\tt{  \: P(A)\cap P(B) \:   =  \: P(A\cap B) \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

1. COMMUTATIVE LAW

\rm :\longmapsto\:\boxed{\tt{ A\cup B = B\cup A}} \\  \\ \rm :\longmapsto\:\boxed{\tt{ A\cap B = B\cap A}}

2. ASSOCIATIVE LAW

\rm :\longmapsto\:\boxed{\tt{ (A\cup B)\cup C = A\cup (B\cup C)}} \\  \\ \rm :\longmapsto\:\boxed{\tt{ (A\cap B)\cap C = A\cap (B\cap C)}}

3. DISTRIBUTIVE LAW

\boxed{\tt{ A\cup (B\cap C) = (A\cup B)\cap (A\cup C)}} \\  \\ \boxed{\tt{ A\cap (B\cup C) = (A\cap B)\cup (A\cap C)}}

Answered by EmperorSoul
1

\large\underline{\sf{Solution-}}

Let assume that,

\rm :\longmapsto\:A \:  =  \:\{x\} \:

and

\rm :\longmapsto\:B \:  =  \:\{y\} \:

\rm\implies \:A \: \cap  \: B = \phi

and

\rm :\longmapsto\:A\cup B = \{x, \: y\}

We know,

Power set of a set A is defined as set of subsets of A.

So,

\rm :\longmapsto\:P(A) = \{ \phi ,\: x\}

and

\rm :\longmapsto\:P(B) = \{ \phi ,\: y\}

and

\rm\implies \:P(A \: \cap  \: B) =\{ \phi \}

and

\rm :\longmapsto\:P(A\cup B) = \{\phi ,x,y,xy\}

Now, Consider

\rm :\longmapsto\:P(A)\cup P(B) = \{\phi ,x,y\}

and

\rm :\longmapsto\:P(A\cup B) = \{\phi ,x,y,xy\}

\rm\implies \:\boxed{\tt{  \: P(A)\cup P(B) \:  \ne \: P(A\cup B) \: }} \\

Now, Consider

\rm :\longmapsto\:P(A\cap B) = \{\phi \}

and

\rm :\longmapsto\:P(A) \: \cap \: P( B) = \{\phi \}

\rm\implies \:\boxed{\tt{  \: P(A)\cap P(B) \:   =  \: P(A\cap B) \: }} \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

1. COMMUTATIVE LAW

\rm :\longmapsto\:\boxed{\tt{ A\cup B = B\cup A}} \\  \\ \rm :\longmapsto\:\boxed{\tt{ A\cap B = B\cap A}}

2. ASSOCIATIVE LAW

\rm :\longmapsto\:\boxed{\tt{ (A\cup B)\cup C = A\cup (B\cup C)}} \\  \\ \rm :\longmapsto\:\boxed{\tt{ (A\cap B)\cap C = A\cap (B\cap C)}}

3. DISTRIBUTIVE LAW

\boxed{\tt{ A\cup (B\cap C) = (A\cup B)\cap (A\cup C)}} \\  \\ \boxed{\tt{ A\cap (B\cup C) = (A\cap B)\cup (A\cap C)}}

Similar questions